mirror of
https://codeberg.org/forgejo/forgejo
synced 2024-11-25 11:16:11 +01:00
d2ea21d0d8
* use certmagic for more extensible/robust ACME cert handling * accept TOS based on config option Signed-off-by: Andrew Thornton <art27@cantab.net> Co-authored-by: zeripath <art27@cantab.net> Co-authored-by: Lauris BH <lauris@nix.lv>
95 lines
2.9 KiB
Go
Vendored
95 lines
2.9 KiB
Go
Vendored
package dns
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/dsa"
|
|
"crypto/ecdsa"
|
|
"crypto/rsa"
|
|
"math/big"
|
|
"strconv"
|
|
|
|
"golang.org/x/crypto/ed25519"
|
|
)
|
|
|
|
const format = "Private-key-format: v1.3\n"
|
|
|
|
var bigIntOne = big.NewInt(1)
|
|
|
|
// PrivateKeyString converts a PrivateKey to a string. This string has the same
|
|
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
|
|
// It needs some info from the key (the algorithm), so its a method of the DNSKEY
|
|
// It supports rsa.PrivateKey, ecdsa.PrivateKey and dsa.PrivateKey
|
|
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
|
|
algorithm := strconv.Itoa(int(r.Algorithm))
|
|
algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
|
|
|
|
switch p := p.(type) {
|
|
case *rsa.PrivateKey:
|
|
modulus := toBase64(p.PublicKey.N.Bytes())
|
|
e := big.NewInt(int64(p.PublicKey.E))
|
|
publicExponent := toBase64(e.Bytes())
|
|
privateExponent := toBase64(p.D.Bytes())
|
|
prime1 := toBase64(p.Primes[0].Bytes())
|
|
prime2 := toBase64(p.Primes[1].Bytes())
|
|
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
|
|
// and from: http://code.google.com/p/go/issues/detail?id=987
|
|
p1 := new(big.Int).Sub(p.Primes[0], bigIntOne)
|
|
q1 := new(big.Int).Sub(p.Primes[1], bigIntOne)
|
|
exp1 := new(big.Int).Mod(p.D, p1)
|
|
exp2 := new(big.Int).Mod(p.D, q1)
|
|
coeff := new(big.Int).ModInverse(p.Primes[1], p.Primes[0])
|
|
|
|
exponent1 := toBase64(exp1.Bytes())
|
|
exponent2 := toBase64(exp2.Bytes())
|
|
coefficient := toBase64(coeff.Bytes())
|
|
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"Modulus: " + modulus + "\n" +
|
|
"PublicExponent: " + publicExponent + "\n" +
|
|
"PrivateExponent: " + privateExponent + "\n" +
|
|
"Prime1: " + prime1 + "\n" +
|
|
"Prime2: " + prime2 + "\n" +
|
|
"Exponent1: " + exponent1 + "\n" +
|
|
"Exponent2: " + exponent2 + "\n" +
|
|
"Coefficient: " + coefficient + "\n"
|
|
|
|
case *ecdsa.PrivateKey:
|
|
var intlen int
|
|
switch r.Algorithm {
|
|
case ECDSAP256SHA256:
|
|
intlen = 32
|
|
case ECDSAP384SHA384:
|
|
intlen = 48
|
|
}
|
|
private := toBase64(intToBytes(p.D, intlen))
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"PrivateKey: " + private + "\n"
|
|
|
|
case *dsa.PrivateKey:
|
|
T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8)
|
|
prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8))
|
|
subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20))
|
|
base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8))
|
|
priv := toBase64(intToBytes(p.X, 20))
|
|
pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8))
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"Prime(p): " + prime + "\n" +
|
|
"Subprime(q): " + subprime + "\n" +
|
|
"Base(g): " + base + "\n" +
|
|
"Private_value(x): " + priv + "\n" +
|
|
"Public_value(y): " + pub + "\n"
|
|
|
|
case ed25519.PrivateKey:
|
|
private := toBase64(p.Seed())
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"PrivateKey: " + private + "\n"
|
|
|
|
default:
|
|
return ""
|
|
}
|
|
}
|