mirror of
https://codeberg.org/forgejo/forgejo
synced 2024-12-11 05:51:57 +01:00
417 lines
12 KiB
Go
Vendored
417 lines
12 KiB
Go
Vendored
// +build 386,!appengine amd64,!appengine arm,!appengine arm64,!appengine ppc64le,!appengine mipsle,!appengine mips64le,!appengine mips64p32le,!appengine wasm,!appengine
|
|
|
|
package roaring
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"errors"
|
|
"io"
|
|
"reflect"
|
|
"runtime"
|
|
"unsafe"
|
|
)
|
|
|
|
func (ac *arrayContainer) writeTo(stream io.Writer) (int, error) {
|
|
buf := uint16SliceAsByteSlice(ac.content)
|
|
return stream.Write(buf)
|
|
}
|
|
|
|
func (bc *bitmapContainer) writeTo(stream io.Writer) (int, error) {
|
|
if bc.cardinality <= arrayDefaultMaxSize {
|
|
return 0, errors.New("refusing to write bitmap container with cardinality of array container")
|
|
}
|
|
buf := uint64SliceAsByteSlice(bc.bitmap)
|
|
return stream.Write(buf)
|
|
}
|
|
|
|
func uint64SliceAsByteSlice(slice []uint64) []byte {
|
|
// make a new slice header
|
|
header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
|
|
|
// update its capacity and length
|
|
header.Len *= 8
|
|
header.Cap *= 8
|
|
|
|
// instantiate result and use KeepAlive so data isn't unmapped.
|
|
result := *(*[]byte)(unsafe.Pointer(&header))
|
|
runtime.KeepAlive(&slice)
|
|
|
|
// return it
|
|
return result
|
|
}
|
|
|
|
func uint16SliceAsByteSlice(slice []uint16) []byte {
|
|
// make a new slice header
|
|
header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
|
|
|
// update its capacity and length
|
|
header.Len *= 2
|
|
header.Cap *= 2
|
|
|
|
// instantiate result and use KeepAlive so data isn't unmapped.
|
|
result := *(*[]byte)(unsafe.Pointer(&header))
|
|
runtime.KeepAlive(&slice)
|
|
|
|
// return it
|
|
return result
|
|
}
|
|
|
|
func (bc *bitmapContainer) asLittleEndianByteSlice() []byte {
|
|
return uint64SliceAsByteSlice(bc.bitmap)
|
|
}
|
|
|
|
// Deserialization code follows
|
|
|
|
////
|
|
// These methods (byteSliceAsUint16Slice,...) do not make copies,
|
|
// they are pointer-based (unsafe). The caller is responsible to
|
|
// ensure that the input slice does not get garbage collected, deleted
|
|
// or modified while you hold the returned slince.
|
|
////
|
|
func byteSliceAsUint16Slice(slice []byte) (result []uint16) { // here we create a new slice holder
|
|
if len(slice)%2 != 0 {
|
|
panic("Slice size should be divisible by 2")
|
|
}
|
|
// reference: https://go101.org/article/unsafe.html
|
|
|
|
// make a new slice header
|
|
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
|
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
|
|
|
// transfer the data from the given slice to a new variable (our result)
|
|
rHeader.Data = bHeader.Data
|
|
rHeader.Len = bHeader.Len / 2
|
|
rHeader.Cap = bHeader.Cap / 2
|
|
|
|
// instantiate result and use KeepAlive so data isn't unmapped.
|
|
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
|
|
|
// return result
|
|
return
|
|
}
|
|
|
|
func byteSliceAsUint64Slice(slice []byte) (result []uint64) {
|
|
if len(slice)%8 != 0 {
|
|
panic("Slice size should be divisible by 8")
|
|
}
|
|
// reference: https://go101.org/article/unsafe.html
|
|
|
|
// make a new slice header
|
|
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
|
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
|
|
|
// transfer the data from the given slice to a new variable (our result)
|
|
rHeader.Data = bHeader.Data
|
|
rHeader.Len = bHeader.Len / 8
|
|
rHeader.Cap = bHeader.Cap / 8
|
|
|
|
// instantiate result and use KeepAlive so data isn't unmapped.
|
|
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
|
|
|
// return result
|
|
return
|
|
}
|
|
|
|
func byteSliceAsInterval16Slice(slice []byte) (result []interval16) {
|
|
if len(slice)%4 != 0 {
|
|
panic("Slice size should be divisible by 4")
|
|
}
|
|
// reference: https://go101.org/article/unsafe.html
|
|
|
|
// make a new slice header
|
|
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
|
|
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
|
|
|
|
// transfer the data from the given slice to a new variable (our result)
|
|
rHeader.Data = bHeader.Data
|
|
rHeader.Len = bHeader.Len / 4
|
|
rHeader.Cap = bHeader.Cap / 4
|
|
|
|
// instantiate result and use KeepAlive so data isn't unmapped.
|
|
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
|
|
|
|
// return result
|
|
return
|
|
}
|
|
|
|
// FromBuffer creates a bitmap from its serialized version stored in buffer.
|
|
// It uses CRoaring's frozen bitmap format.
|
|
//
|
|
// The format specification is available here:
|
|
// https://github.com/RoaringBitmap/CRoaring/blob/2c867e9f9c9e2a3a7032791f94c4c7ae3013f6e0/src/roaring.c#L2756-L2783
|
|
//
|
|
// The provided byte array (buf) is expected to be a constant.
|
|
// The function makes the best effort attempt not to copy data.
|
|
// Only little endian is supported. The function will err if it detects a big
|
|
// endian serialized file.
|
|
// You should take care not to modify buff as it will likely result in
|
|
// unexpected program behavior.
|
|
// If said buffer comes from a memory map, it's advisable to give it read
|
|
// only permissions, either at creation or by calling Mprotect from the
|
|
// golang.org/x/sys/unix package.
|
|
//
|
|
// Resulting bitmaps are effectively immutable in the following sense:
|
|
// a copy-on-write marker is used so that when you modify the resulting
|
|
// bitmap, copies of selected data (containers) are made.
|
|
// You should *not* change the copy-on-write status of the resulting
|
|
// bitmaps (SetCopyOnWrite).
|
|
//
|
|
// If buf becomes unavailable, then a bitmap created with
|
|
// FromBuffer would be effectively broken. Furthermore, any
|
|
// bitmap derived from this bitmap (e.g., via Or, And) might
|
|
// also be broken. Thus, before making buf unavailable, you should
|
|
// call CloneCopyOnWriteContainers on all such bitmaps.
|
|
//
|
|
func (rb *Bitmap) FrozenView(buf []byte) error {
|
|
return rb.highlowcontainer.frozenView(buf)
|
|
}
|
|
|
|
/* Verbatim specification from CRoaring.
|
|
*
|
|
* FROZEN SERIALIZATION FORMAT DESCRIPTION
|
|
*
|
|
* -- (beginning must be aligned by 32 bytes) --
|
|
* <bitset_data> uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS * num_bitset_containers]
|
|
* <run_data> rle16_t[total number of rle elements in all run containers]
|
|
* <array_data> uint16_t[total number of array elements in all array containers]
|
|
* <keys> uint16_t[num_containers]
|
|
* <counts> uint16_t[num_containers]
|
|
* <typecodes> uint8_t[num_containers]
|
|
* <header> uint32_t
|
|
*
|
|
* <header> is a 4-byte value which is a bit union of FROZEN_COOKIE (15 bits)
|
|
* and the number of containers (17 bits).
|
|
*
|
|
* <counts> stores number of elements for every container.
|
|
* Its meaning depends on container type.
|
|
* For array and bitset containers, this value is the container cardinality minus one.
|
|
* For run container, it is the number of rle_t elements (n_runs).
|
|
*
|
|
* <bitset_data>,<array_data>,<run_data> are flat arrays of elements of
|
|
* all containers of respective type.
|
|
*
|
|
* <*_data> and <keys> are kept close together because they are not accessed
|
|
* during deserilization. This may reduce IO in case of large mmaped bitmaps.
|
|
* All members have their native alignments during deserilization except <header>,
|
|
* which is not guaranteed to be aligned by 4 bytes.
|
|
*/
|
|
const FROZEN_COOKIE = 13766
|
|
|
|
var (
|
|
FrozenBitmapInvalidCookie = errors.New("header does not contain the FROZEN_COOKIE")
|
|
FrozenBitmapBigEndian = errors.New("loading big endian frozen bitmaps is not supported")
|
|
FrozenBitmapIncomplete = errors.New("input buffer too small to contain a frozen bitmap")
|
|
FrozenBitmapOverpopulated = errors.New("too many containers")
|
|
FrozenBitmapUnexpectedData = errors.New("spurious data in input")
|
|
FrozenBitmapInvalidTypecode = errors.New("unrecognized typecode")
|
|
FrozenBitmapBufferTooSmall = errors.New("buffer too small")
|
|
)
|
|
|
|
func (ra *roaringArray) frozenView(buf []byte) error {
|
|
if len(buf) < 4 {
|
|
return FrozenBitmapIncomplete
|
|
}
|
|
|
|
headerBE := binary.BigEndian.Uint32(buf[len(buf)-4:])
|
|
if headerBE & 0x7fff == FROZEN_COOKIE {
|
|
return FrozenBitmapBigEndian
|
|
}
|
|
|
|
header := binary.LittleEndian.Uint32(buf[len(buf)-4:])
|
|
buf = buf[:len(buf)-4]
|
|
|
|
if header & 0x7fff != FROZEN_COOKIE {
|
|
return FrozenBitmapInvalidCookie
|
|
}
|
|
|
|
nCont := int(header >> 15)
|
|
if nCont > (1 << 16) {
|
|
return FrozenBitmapOverpopulated
|
|
}
|
|
|
|
// 1 byte per type, 2 bytes per key, 2 bytes per count.
|
|
if len(buf) < 5*nCont {
|
|
return FrozenBitmapIncomplete
|
|
}
|
|
|
|
types := buf[len(buf)-nCont:]
|
|
buf = buf[:len(buf)-nCont]
|
|
|
|
counts := byteSliceAsUint16Slice(buf[len(buf)-2*nCont:])
|
|
buf = buf[:len(buf)-2*nCont]
|
|
|
|
keys := byteSliceAsUint16Slice(buf[len(buf)-2*nCont:])
|
|
buf = buf[:len(buf)-2*nCont]
|
|
|
|
nBitmap, nArray, nRun := uint64(0), uint64(0), uint64(0)
|
|
nArrayEl, nRunEl := uint64(0), uint64(0)
|
|
for i, t := range types {
|
|
switch (t) {
|
|
case 1:
|
|
nBitmap++
|
|
case 2:
|
|
nArray++
|
|
nArrayEl += uint64(counts[i])+1
|
|
case 3:
|
|
nRun++
|
|
nRunEl += uint64(counts[i])
|
|
default:
|
|
return FrozenBitmapInvalidTypecode
|
|
}
|
|
}
|
|
|
|
if uint64(len(buf)) < (1 << 13)*nBitmap + 4*nRunEl + 2*nArrayEl {
|
|
return FrozenBitmapIncomplete
|
|
}
|
|
|
|
bitsetsArena := byteSliceAsUint64Slice(buf[:(1 << 13)*nBitmap])
|
|
buf = buf[(1 << 13)*nBitmap:]
|
|
|
|
runsArena := byteSliceAsInterval16Slice(buf[:4*nRunEl])
|
|
buf = buf[4*nRunEl:]
|
|
|
|
arraysArena := byteSliceAsUint16Slice(buf[:2*nArrayEl])
|
|
buf = buf[2*nArrayEl:]
|
|
|
|
if len(buf) != 0 {
|
|
return FrozenBitmapUnexpectedData
|
|
}
|
|
|
|
// TODO: maybe arena_alloc all this.
|
|
containers := make([]container, nCont)
|
|
bitsets := make([]bitmapContainer, nBitmap)
|
|
arrays := make([]arrayContainer, nArray)
|
|
runs := make([]runContainer16, nRun)
|
|
needCOW := make([]bool, nCont)
|
|
|
|
iBitset, iArray, iRun := uint64(0), uint64(0), uint64(0)
|
|
for i, t := range types {
|
|
needCOW[i] = true
|
|
|
|
switch (t) {
|
|
case 1:
|
|
containers[i] = &bitsets[iBitset]
|
|
bitsets[iBitset].cardinality = int(counts[i])+1
|
|
bitsets[iBitset].bitmap = bitsetsArena[:1024]
|
|
bitsetsArena = bitsetsArena[1024:]
|
|
iBitset++
|
|
case 2:
|
|
containers[i] = &arrays[iArray]
|
|
sz := int(counts[i])+1
|
|
arrays[iArray].content = arraysArena[:sz]
|
|
arraysArena = arraysArena[sz:]
|
|
iArray++
|
|
case 3:
|
|
containers[i] = &runs[iRun]
|
|
runs[iRun].iv = runsArena[:counts[i]]
|
|
runsArena = runsArena[counts[i]:]
|
|
iRun++
|
|
}
|
|
}
|
|
|
|
// Not consuming the full input is a bug.
|
|
if iBitset != nBitmap || len(bitsetsArena) != 0 ||
|
|
iArray != nArray || len(arraysArena) != 0 ||
|
|
iRun != nRun || len(runsArena) != 0 {
|
|
panic("we missed something")
|
|
}
|
|
|
|
ra.keys = keys
|
|
ra.containers = containers
|
|
ra.needCopyOnWrite = needCOW
|
|
ra.copyOnWrite = true
|
|
|
|
return nil
|
|
}
|
|
|
|
func (bm *Bitmap) GetFrozenSizeInBytes() uint64 {
|
|
nBits, nArrayEl, nRunEl := uint64(0), uint64(0), uint64(0)
|
|
for _, c := range bm.highlowcontainer.containers {
|
|
switch v := c.(type) {
|
|
case *bitmapContainer:
|
|
nBits++
|
|
case *arrayContainer:
|
|
nArrayEl += uint64(len(v.content))
|
|
case *runContainer16:
|
|
nRunEl += uint64(len(v.iv))
|
|
}
|
|
}
|
|
return 4 + 5*uint64(len(bm.highlowcontainer.containers)) +
|
|
(nBits << 13) + 2*nArrayEl + 4*nRunEl
|
|
}
|
|
|
|
func (bm *Bitmap) Freeze() ([]byte, error) {
|
|
sz := bm.GetFrozenSizeInBytes()
|
|
buf := make([]byte, sz)
|
|
_, err := bm.FreezeTo(buf)
|
|
return buf, err
|
|
}
|
|
|
|
func (bm *Bitmap) FreezeTo(buf []byte) (int, error) {
|
|
containers := bm.highlowcontainer.containers
|
|
nCont := len(containers)
|
|
|
|
nBits, nArrayEl, nRunEl := 0, 0, 0
|
|
for _, c := range containers {
|
|
switch v := c.(type) {
|
|
case *bitmapContainer:
|
|
nBits++
|
|
case *arrayContainer:
|
|
nArrayEl += len(v.content)
|
|
case *runContainer16:
|
|
nRunEl += len(v.iv)
|
|
}
|
|
}
|
|
|
|
serialSize := 4 + 5*nCont + (1 << 13)*nBits + 4*nRunEl + 2*nArrayEl
|
|
if len(buf) < serialSize {
|
|
return 0, FrozenBitmapBufferTooSmall
|
|
}
|
|
|
|
bitsArena := byteSliceAsUint64Slice(buf[:(1 << 13)*nBits])
|
|
buf = buf[(1 << 13)*nBits:]
|
|
|
|
runsArena := byteSliceAsInterval16Slice(buf[:4*nRunEl])
|
|
buf = buf[4*nRunEl:]
|
|
|
|
arraysArena := byteSliceAsUint16Slice(buf[:2*nArrayEl])
|
|
buf = buf[2*nArrayEl:]
|
|
|
|
keys := byteSliceAsUint16Slice(buf[:2*nCont])
|
|
buf = buf[2*nCont:]
|
|
|
|
counts := byteSliceAsUint16Slice(buf[:2*nCont])
|
|
buf = buf[2*nCont:]
|
|
|
|
types := buf[:nCont]
|
|
buf = buf[nCont:]
|
|
|
|
header := uint32(FROZEN_COOKIE|(nCont << 15))
|
|
binary.LittleEndian.PutUint32(buf[:4], header)
|
|
|
|
copy(keys, bm.highlowcontainer.keys[:])
|
|
|
|
for i, c := range containers {
|
|
switch v := c.(type) {
|
|
case *bitmapContainer:
|
|
copy(bitsArena, v.bitmap)
|
|
bitsArena = bitsArena[1024:]
|
|
counts[i] = uint16(v.cardinality-1)
|
|
types[i] = 1
|
|
case *arrayContainer:
|
|
copy(arraysArena, v.content)
|
|
arraysArena = arraysArena[len(v.content):]
|
|
elems := len(v.content)
|
|
counts[i] = uint16(elems-1)
|
|
types[i] = 2
|
|
case *runContainer16:
|
|
copy(runsArena, v.iv)
|
|
runs := len(v.iv)
|
|
runsArena = runsArena[runs:]
|
|
counts[i] = uint16(runs)
|
|
types[i] = 3
|
|
}
|
|
}
|
|
|
|
return serialSize, nil
|
|
}
|