Template
1
0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo synced 2024-11-25 03:06:10 +01:00
forgejo/vendor/github.com/klauspost/crc32/crc32.go
2016-11-04 08:43:11 +01:00

208 lines
6.2 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
// checksum. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for
// information.
//
// Polynomials are represented in LSB-first form also known as reversed representation.
//
// See http://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
// for information.
package crc32
import (
"hash"
"sync"
)
// The size of a CRC-32 checksum in bytes.
const Size = 4
// Predefined polynomials.
const (
// IEEE is by far and away the most common CRC-32 polynomial.
// Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
IEEE = 0xedb88320
// Castagnoli's polynomial, used in iSCSI.
// Has better error detection characteristics than IEEE.
// http://dx.doi.org/10.1109/26.231911
Castagnoli = 0x82f63b78
// Koopman's polynomial.
// Also has better error detection characteristics than IEEE.
// http://dx.doi.org/10.1109/DSN.2002.1028931
Koopman = 0xeb31d82e
)
// Table is a 256-word table representing the polynomial for efficient processing.
type Table [256]uint32
// This file makes use of functions implemented in architecture-specific files.
// The interface that they implement is as follows:
//
// // archAvailableIEEE reports whether an architecture-specific CRC32-IEEE
// // algorithm is available.
// archAvailableIEEE() bool
//
// // archInitIEEE initializes the architecture-specific CRC3-IEEE algorithm.
// // It can only be called if archAvailableIEEE() returns true.
// archInitIEEE()
//
// // archUpdateIEEE updates the given CRC32-IEEE. It can only be called if
// // archInitIEEE() was previously called.
// archUpdateIEEE(crc uint32, p []byte) uint32
//
// // archAvailableCastagnoli reports whether an architecture-specific
// // CRC32-C algorithm is available.
// archAvailableCastagnoli() bool
//
// // archInitCastagnoli initializes the architecture-specific CRC32-C
// // algorithm. It can only be called if archAvailableCastagnoli() returns
// // true.
// archInitCastagnoli()
//
// // archUpdateCastagnoli updates the given CRC32-C. It can only be called
// // if archInitCastagnoli() was previously called.
// archUpdateCastagnoli(crc uint32, p []byte) uint32
// castagnoliTable points to a lazily initialized Table for the Castagnoli
// polynomial. MakeTable will always return this value when asked to make a
// Castagnoli table so we can compare against it to find when the caller is
// using this polynomial.
var castagnoliTable *Table
var castagnoliTable8 *slicing8Table
var castagnoliArchImpl bool
var updateCastagnoli func(crc uint32, p []byte) uint32
var castagnoliOnce sync.Once
func castagnoliInit() {
castagnoliTable = simpleMakeTable(Castagnoli)
castagnoliArchImpl = archAvailableCastagnoli()
if castagnoliArchImpl {
archInitCastagnoli()
updateCastagnoli = archUpdateCastagnoli
} else {
// Initialize the slicing-by-8 table.
castagnoliTable8 = slicingMakeTable(Castagnoli)
updateCastagnoli = func(crc uint32, p []byte) uint32 {
return slicingUpdate(crc, castagnoliTable8, p)
}
}
}
// IEEETable is the table for the IEEE polynomial.
var IEEETable = simpleMakeTable(IEEE)
// ieeeTable8 is the slicing8Table for IEEE
var ieeeTable8 *slicing8Table
var ieeeArchImpl bool
var updateIEEE func(crc uint32, p []byte) uint32
var ieeeOnce sync.Once
func ieeeInit() {
ieeeArchImpl = archAvailableIEEE()
if ieeeArchImpl {
archInitIEEE()
updateIEEE = archUpdateIEEE
} else {
// Initialize the slicing-by-8 table.
ieeeTable8 = slicingMakeTable(IEEE)
updateIEEE = func(crc uint32, p []byte) uint32 {
return slicingUpdate(crc, ieeeTable8, p)
}
}
}
// MakeTable returns a Table constructed from the specified polynomial.
// The contents of this Table must not be modified.
func MakeTable(poly uint32) *Table {
switch poly {
case IEEE:
ieeeOnce.Do(ieeeInit)
return IEEETable
case Castagnoli:
castagnoliOnce.Do(castagnoliInit)
return castagnoliTable
}
return simpleMakeTable(poly)
}
// digest represents the partial evaluation of a checksum.
type digest struct {
crc uint32
tab *Table
}
// New creates a new hash.Hash32 computing the CRC-32 checksum
// using the polynomial represented by the Table.
// Its Sum method will lay the value out in big-endian byte order.
func New(tab *Table) hash.Hash32 {
if tab == IEEETable {
ieeeOnce.Do(ieeeInit)
}
return &digest{0, tab}
}
// NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum
// using the IEEE polynomial.
// Its Sum method will lay the value out in big-endian byte order.
func NewIEEE() hash.Hash32 { return New(IEEETable) }
func (d *digest) Size() int { return Size }
func (d *digest) BlockSize() int { return 1 }
func (d *digest) Reset() { d.crc = 0 }
// Update returns the result of adding the bytes in p to the crc.
func Update(crc uint32, tab *Table, p []byte) uint32 {
switch tab {
case castagnoliTable:
return updateCastagnoli(crc, p)
case IEEETable:
// Unfortunately, because IEEETable is exported, IEEE may be used without a
// call to MakeTable. We have to make sure it gets initialized in that case.
ieeeOnce.Do(ieeeInit)
return updateIEEE(crc, p)
default:
return simpleUpdate(crc, tab, p)
}
}
func (d *digest) Write(p []byte) (n int, err error) {
switch d.tab {
case castagnoliTable:
d.crc = updateCastagnoli(d.crc, p)
case IEEETable:
// We only create digest objects through New() which takes care of
// initialization in this case.
d.crc = updateIEEE(d.crc, p)
default:
d.crc = simpleUpdate(d.crc, d.tab, p)
}
return len(p), nil
}
func (d *digest) Sum32() uint32 { return d.crc }
func (d *digest) Sum(in []byte) []byte {
s := d.Sum32()
return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
}
// Checksum returns the CRC-32 checksum of data
// using the polynomial represented by the Table.
func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) }
// ChecksumIEEE returns the CRC-32 checksum of data
// using the IEEE polynomial.
func ChecksumIEEE(data []byte) uint32 {
ieeeOnce.Do(ieeeInit)
return updateIEEE(0, data)
}