mirror of
https://codeberg.org/forgejo/forgejo
synced 2024-11-29 21:26:10 +01:00
2245 lines
66 KiB
Go
2245 lines
66 KiB
Go
/**
|
|
* dmp.go
|
|
*
|
|
* Go language implementation of Google Diff, Match, and Patch library
|
|
*
|
|
* Original library is Copyright (c) 2006 Google Inc.
|
|
* http://code.google.com/p/google-diff-match-patch/
|
|
*
|
|
* Copyright (c) 2012 Sergi Mansilla <sergi.mansilla@gmail.com>
|
|
* https://github.com/sergi/go-diff
|
|
*
|
|
* See included LICENSE file for license details.
|
|
*/
|
|
|
|
// Package diffmatchpatch offers robust algorithms to perform the
|
|
// operations required for synchronizing plain text.
|
|
package diffmatchpatch
|
|
|
|
import (
|
|
"bytes"
|
|
"errors"
|
|
"fmt"
|
|
"html"
|
|
"math"
|
|
"net/url"
|
|
"regexp"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
// The data structure representing a diff is an array of tuples:
|
|
// [[DiffDelete, 'Hello'], [DiffInsert, 'Goodbye'], [DiffEqual, ' world.']]
|
|
// which means: delete 'Hello', add 'Goodbye' and keep ' world.'
|
|
|
|
// Operation defines the operation of a diff item.
|
|
type Operation int8
|
|
|
|
const (
|
|
// DiffDelete item represents a delete diff.
|
|
DiffDelete Operation = -1
|
|
// DiffInsert item represents an insert diff.
|
|
DiffInsert Operation = 1
|
|
// DiffEqual item represents an equal diff.
|
|
DiffEqual Operation = 0
|
|
)
|
|
|
|
// unescaper unescapes selected chars for compatibility with JavaScript's encodeURI.
|
|
// In speed critical applications this could be dropped since the
|
|
// receiving application will certainly decode these fine.
|
|
// Note that this function is case-sensitive. Thus "%3F" would not be
|
|
// unescaped. But this is ok because it is only called with the output of
|
|
// HttpUtility.UrlEncode which returns lowercase hex.
|
|
//
|
|
// Example: "%3f" -> "?", "%24" -> "$", etc.
|
|
var unescaper = strings.NewReplacer(
|
|
"%21", "!", "%7E", "~", "%27", "'",
|
|
"%28", "(", "%29", ")", "%3B", ";",
|
|
"%2F", "/", "%3F", "?", "%3A", ":",
|
|
"%40", "@", "%26", "&", "%3D", "=",
|
|
"%2B", "+", "%24", "$", "%2C", ",", "%23", "#", "%2A", "*")
|
|
|
|
// Define some regex patterns for matching boundaries.
|
|
var (
|
|
nonAlphaNumericRegex = regexp.MustCompile(`[^a-zA-Z0-9]`)
|
|
whitespaceRegex = regexp.MustCompile(`\s`)
|
|
linebreakRegex = regexp.MustCompile(`[\r\n]`)
|
|
blanklineEndRegex = regexp.MustCompile(`\n\r?\n$`)
|
|
blanklineStartRegex = regexp.MustCompile(`^\r?\n\r?\n`)
|
|
)
|
|
|
|
func splice(slice []Diff, index int, amount int, elements ...Diff) []Diff {
|
|
return append(slice[:index], append(elements, slice[index+amount:]...)...)
|
|
}
|
|
|
|
// indexOf returns the first index of pattern in str, starting at str[i].
|
|
func indexOf(str string, pattern string, i int) int {
|
|
if i > len(str)-1 {
|
|
return -1
|
|
}
|
|
if i <= 0 {
|
|
return strings.Index(str, pattern)
|
|
}
|
|
ind := strings.Index(str[i:], pattern)
|
|
if ind == -1 {
|
|
return -1
|
|
}
|
|
return ind + i
|
|
}
|
|
|
|
// lastIndexOf returns the last index of pattern in str, starting at str[i].
|
|
func lastIndexOf(str string, pattern string, i int) int {
|
|
if i < 0 {
|
|
return -1
|
|
}
|
|
if i >= len(str) {
|
|
return strings.LastIndex(str, pattern)
|
|
}
|
|
_, size := utf8.DecodeRuneInString(str[i:])
|
|
return strings.LastIndex(str[:i+size], pattern)
|
|
}
|
|
|
|
// Return the index of pattern in target, starting at target[i].
|
|
func runesIndexOf(target, pattern []rune, i int) int {
|
|
if i > len(target)-1 {
|
|
return -1
|
|
}
|
|
if i <= 0 {
|
|
return runesIndex(target, pattern)
|
|
}
|
|
ind := runesIndex(target[i:], pattern)
|
|
if ind == -1 {
|
|
return -1
|
|
}
|
|
return ind + i
|
|
}
|
|
|
|
func min(x, y int) int {
|
|
if x < y {
|
|
return x
|
|
}
|
|
return y
|
|
}
|
|
|
|
func max(x, y int) int {
|
|
if x > y {
|
|
return x
|
|
}
|
|
return y
|
|
}
|
|
|
|
func runesEqual(r1, r2 []rune) bool {
|
|
if len(r1) != len(r2) {
|
|
return false
|
|
}
|
|
for i, c := range r1 {
|
|
if c != r2[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// The equivalent of strings.Index for rune slices.
|
|
func runesIndex(r1, r2 []rune) int {
|
|
last := len(r1) - len(r2)
|
|
for i := 0; i <= last; i++ {
|
|
if runesEqual(r1[i:i+len(r2)], r2) {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// Diff represents one diff operation
|
|
type Diff struct {
|
|
Type Operation
|
|
Text string
|
|
}
|
|
|
|
// Patch represents one patch operation.
|
|
type Patch struct {
|
|
diffs []Diff
|
|
start1 int
|
|
start2 int
|
|
length1 int
|
|
length2 int
|
|
}
|
|
|
|
// String emulates GNU diff's format.
|
|
// Header: @@ -382,8 +481,9 @@
|
|
// Indicies are printed as 1-based, not 0-based.
|
|
func (p *Patch) String() string {
|
|
var coords1, coords2 string
|
|
|
|
if p.length1 == 0 {
|
|
coords1 = strconv.Itoa(p.start1) + ",0"
|
|
} else if p.length1 == 1 {
|
|
coords1 = strconv.Itoa(p.start1 + 1)
|
|
} else {
|
|
coords1 = strconv.Itoa(p.start1+1) + "," + strconv.Itoa(p.length1)
|
|
}
|
|
|
|
if p.length2 == 0 {
|
|
coords2 = strconv.Itoa(p.start2) + ",0"
|
|
} else if p.length2 == 1 {
|
|
coords2 = strconv.Itoa(p.start2 + 1)
|
|
} else {
|
|
coords2 = strconv.Itoa(p.start2+1) + "," + strconv.Itoa(p.length2)
|
|
}
|
|
|
|
var text bytes.Buffer
|
|
_, _ = text.WriteString("@@ -" + coords1 + " +" + coords2 + " @@\n")
|
|
|
|
// Escape the body of the patch with %xx notation.
|
|
for _, aDiff := range p.diffs {
|
|
switch aDiff.Type {
|
|
case DiffInsert:
|
|
_, _ = text.WriteString("+")
|
|
case DiffDelete:
|
|
_, _ = text.WriteString("-")
|
|
case DiffEqual:
|
|
_, _ = text.WriteString(" ")
|
|
}
|
|
|
|
_, _ = text.WriteString(strings.Replace(url.QueryEscape(aDiff.Text), "+", " ", -1))
|
|
_, _ = text.WriteString("\n")
|
|
}
|
|
|
|
return unescaper.Replace(text.String())
|
|
}
|
|
|
|
// DiffMatchPatch holds the configuration for diff-match-patch operations.
|
|
type DiffMatchPatch struct {
|
|
// Number of seconds to map a diff before giving up (0 for infinity).
|
|
DiffTimeout time.Duration
|
|
// Cost of an empty edit operation in terms of edit characters.
|
|
DiffEditCost int
|
|
// How far to search for a match (0 = exact location, 1000+ = broad match).
|
|
// A match this many characters away from the expected location will add
|
|
// 1.0 to the score (0.0 is a perfect match).
|
|
MatchDistance int
|
|
// When deleting a large block of text (over ~64 characters), how close do
|
|
// the contents have to be to match the expected contents. (0.0 = perfection,
|
|
// 1.0 = very loose). Note that MatchThreshold controls how closely the
|
|
// end points of a delete need to match.
|
|
PatchDeleteThreshold float64
|
|
// Chunk size for context length.
|
|
PatchMargin int
|
|
// The number of bits in an int.
|
|
MatchMaxBits int
|
|
// At what point is no match declared (0.0 = perfection, 1.0 = very loose).
|
|
MatchThreshold float64
|
|
}
|
|
|
|
// New creates a new DiffMatchPatch object with default parameters.
|
|
func New() *DiffMatchPatch {
|
|
// Defaults.
|
|
return &DiffMatchPatch{
|
|
DiffTimeout: time.Second,
|
|
DiffEditCost: 4,
|
|
MatchThreshold: 0.5,
|
|
MatchDistance: 1000,
|
|
PatchDeleteThreshold: 0.5,
|
|
PatchMargin: 4,
|
|
MatchMaxBits: 32,
|
|
}
|
|
}
|
|
|
|
// DiffMain finds the differences between two texts.
|
|
func (dmp *DiffMatchPatch) DiffMain(text1, text2 string, checklines bool) []Diff {
|
|
return dmp.DiffMainRunes([]rune(text1), []rune(text2), checklines)
|
|
}
|
|
|
|
// DiffMainRunes finds the differences between two rune sequences.
|
|
func (dmp *DiffMatchPatch) DiffMainRunes(text1, text2 []rune, checklines bool) []Diff {
|
|
var deadline time.Time
|
|
if dmp.DiffTimeout > 0 {
|
|
deadline = time.Now().Add(dmp.DiffTimeout)
|
|
}
|
|
return dmp.diffMainRunes(text1, text2, checklines, deadline)
|
|
}
|
|
|
|
func (dmp *DiffMatchPatch) diffMainRunes(text1, text2 []rune, checklines bool, deadline time.Time) []Diff {
|
|
if runesEqual(text1, text2) {
|
|
var diffs []Diff
|
|
if len(text1) > 0 {
|
|
diffs = append(diffs, Diff{DiffEqual, string(text1)})
|
|
}
|
|
return diffs
|
|
}
|
|
// Trim off common prefix (speedup).
|
|
commonlength := commonPrefixLength(text1, text2)
|
|
commonprefix := text1[:commonlength]
|
|
text1 = text1[commonlength:]
|
|
text2 = text2[commonlength:]
|
|
|
|
// Trim off common suffix (speedup).
|
|
commonlength = commonSuffixLength(text1, text2)
|
|
commonsuffix := text1[len(text1)-commonlength:]
|
|
text1 = text1[:len(text1)-commonlength]
|
|
text2 = text2[:len(text2)-commonlength]
|
|
|
|
// Compute the diff on the middle block.
|
|
diffs := dmp.diffCompute(text1, text2, checklines, deadline)
|
|
|
|
// Restore the prefix and suffix.
|
|
if len(commonprefix) != 0 {
|
|
diffs = append([]Diff{Diff{DiffEqual, string(commonprefix)}}, diffs...)
|
|
}
|
|
if len(commonsuffix) != 0 {
|
|
diffs = append(diffs, Diff{DiffEqual, string(commonsuffix)})
|
|
}
|
|
|
|
return dmp.DiffCleanupMerge(diffs)
|
|
}
|
|
|
|
// diffCompute finds the differences between two rune slices. Assumes that the texts do not
|
|
// have any common prefix or suffix.
|
|
func (dmp *DiffMatchPatch) diffCompute(text1, text2 []rune, checklines bool, deadline time.Time) []Diff {
|
|
diffs := []Diff{}
|
|
if len(text1) == 0 {
|
|
// Just add some text (speedup).
|
|
return append(diffs, Diff{DiffInsert, string(text2)})
|
|
} else if len(text2) == 0 {
|
|
// Just delete some text (speedup).
|
|
return append(diffs, Diff{DiffDelete, string(text1)})
|
|
}
|
|
|
|
var longtext, shorttext []rune
|
|
if len(text1) > len(text2) {
|
|
longtext = text1
|
|
shorttext = text2
|
|
} else {
|
|
longtext = text2
|
|
shorttext = text1
|
|
}
|
|
|
|
if i := runesIndex(longtext, shorttext); i != -1 {
|
|
op := DiffInsert
|
|
// Swap insertions for deletions if diff is reversed.
|
|
if len(text1) > len(text2) {
|
|
op = DiffDelete
|
|
}
|
|
// Shorter text is inside the longer text (speedup).
|
|
return []Diff{
|
|
Diff{op, string(longtext[:i])},
|
|
Diff{DiffEqual, string(shorttext)},
|
|
Diff{op, string(longtext[i+len(shorttext):])},
|
|
}
|
|
} else if len(shorttext) == 1 {
|
|
// Single character string.
|
|
// After the previous speedup, the character can't be an equality.
|
|
return []Diff{
|
|
Diff{DiffDelete, string(text1)},
|
|
Diff{DiffInsert, string(text2)},
|
|
}
|
|
// Check to see if the problem can be split in two.
|
|
} else if hm := dmp.diffHalfMatch(text1, text2); hm != nil {
|
|
// A half-match was found, sort out the return data.
|
|
text1A := hm[0]
|
|
text1B := hm[1]
|
|
text2A := hm[2]
|
|
text2B := hm[3]
|
|
midCommon := hm[4]
|
|
// Send both pairs off for separate processing.
|
|
diffsA := dmp.diffMainRunes(text1A, text2A, checklines, deadline)
|
|
diffsB := dmp.diffMainRunes(text1B, text2B, checklines, deadline)
|
|
// Merge the results.
|
|
return append(diffsA, append([]Diff{Diff{DiffEqual, string(midCommon)}}, diffsB...)...)
|
|
} else if checklines && len(text1) > 100 && len(text2) > 100 {
|
|
return dmp.diffLineMode(text1, text2, deadline)
|
|
}
|
|
return dmp.diffBisect(text1, text2, deadline)
|
|
}
|
|
|
|
// diffLineMode does a quick line-level diff on both []runes, then rediff the parts for
|
|
// greater accuracy. This speedup can produce non-minimal diffs.
|
|
func (dmp *DiffMatchPatch) diffLineMode(text1, text2 []rune, deadline time.Time) []Diff {
|
|
// Scan the text on a line-by-line basis first.
|
|
text1, text2, linearray := dmp.diffLinesToRunes(text1, text2)
|
|
|
|
diffs := dmp.diffMainRunes(text1, text2, false, deadline)
|
|
|
|
// Convert the diff back to original text.
|
|
diffs = dmp.DiffCharsToLines(diffs, linearray)
|
|
// Eliminate freak matches (e.g. blank lines)
|
|
diffs = dmp.DiffCleanupSemantic(diffs)
|
|
|
|
// Rediff any replacement blocks, this time character-by-character.
|
|
// Add a dummy entry at the end.
|
|
diffs = append(diffs, Diff{DiffEqual, ""})
|
|
|
|
pointer := 0
|
|
countDelete := 0
|
|
countInsert := 0
|
|
|
|
// NOTE: Rune slices are slower than using strings in this case.
|
|
textDelete := ""
|
|
textInsert := ""
|
|
|
|
for pointer < len(diffs) {
|
|
switch diffs[pointer].Type {
|
|
case DiffInsert:
|
|
countInsert++
|
|
textInsert += diffs[pointer].Text
|
|
case DiffDelete:
|
|
countDelete++
|
|
textDelete += diffs[pointer].Text
|
|
case DiffEqual:
|
|
// Upon reaching an equality, check for prior redundancies.
|
|
if countDelete >= 1 && countInsert >= 1 {
|
|
// Delete the offending records and add the merged ones.
|
|
diffs = splice(diffs, pointer-countDelete-countInsert,
|
|
countDelete+countInsert)
|
|
|
|
pointer = pointer - countDelete - countInsert
|
|
a := dmp.diffMainRunes([]rune(textDelete), []rune(textInsert), false, deadline)
|
|
for j := len(a) - 1; j >= 0; j-- {
|
|
diffs = splice(diffs, pointer, 0, a[j])
|
|
}
|
|
pointer = pointer + len(a)
|
|
}
|
|
|
|
countInsert = 0
|
|
countDelete = 0
|
|
textDelete = ""
|
|
textInsert = ""
|
|
}
|
|
pointer++
|
|
}
|
|
|
|
return diffs[:len(diffs)-1] // Remove the dummy entry at the end.
|
|
}
|
|
|
|
// DiffBisect finds the 'middle snake' of a diff, split the problem in two
|
|
// and return the recursively constructed diff.
|
|
// See Myers 1986 paper: An O(ND) Difference Algorithm and Its Variations.
|
|
func (dmp *DiffMatchPatch) DiffBisect(text1, text2 string, deadline time.Time) []Diff {
|
|
// Unused in this code, but retained for interface compatibility.
|
|
return dmp.diffBisect([]rune(text1), []rune(text2), deadline)
|
|
}
|
|
|
|
// diffBisect finds the 'middle snake' of a diff, splits the problem in two
|
|
// and returns the recursively constructed diff.
|
|
// See Myers's 1986 paper: An O(ND) Difference Algorithm and Its Variations.
|
|
func (dmp *DiffMatchPatch) diffBisect(runes1, runes2 []rune, deadline time.Time) []Diff {
|
|
// Cache the text lengths to prevent multiple calls.
|
|
runes1Len, runes2Len := len(runes1), len(runes2)
|
|
|
|
maxD := (runes1Len + runes2Len + 1) / 2
|
|
vOffset := maxD
|
|
vLength := 2 * maxD
|
|
|
|
v1 := make([]int, vLength)
|
|
v2 := make([]int, vLength)
|
|
for i := range v1 {
|
|
v1[i] = -1
|
|
v2[i] = -1
|
|
}
|
|
v1[vOffset+1] = 0
|
|
v2[vOffset+1] = 0
|
|
|
|
delta := runes1Len - runes2Len
|
|
// If the total number of characters is odd, then the front path will collide
|
|
// with the reverse path.
|
|
front := (delta%2 != 0)
|
|
// Offsets for start and end of k loop.
|
|
// Prevents mapping of space beyond the grid.
|
|
k1start := 0
|
|
k1end := 0
|
|
k2start := 0
|
|
k2end := 0
|
|
for d := 0; d < maxD; d++ {
|
|
// Bail out if deadline is reached.
|
|
if !deadline.IsZero() && time.Now().After(deadline) {
|
|
break
|
|
}
|
|
|
|
// Walk the front path one step.
|
|
for k1 := -d + k1start; k1 <= d-k1end; k1 += 2 {
|
|
k1Offset := vOffset + k1
|
|
var x1 int
|
|
|
|
if k1 == -d || (k1 != d && v1[k1Offset-1] < v1[k1Offset+1]) {
|
|
x1 = v1[k1Offset+1]
|
|
} else {
|
|
x1 = v1[k1Offset-1] + 1
|
|
}
|
|
|
|
y1 := x1 - k1
|
|
for x1 < runes1Len && y1 < runes2Len {
|
|
if runes1[x1] != runes2[y1] {
|
|
break
|
|
}
|
|
x1++
|
|
y1++
|
|
}
|
|
v1[k1Offset] = x1
|
|
if x1 > runes1Len {
|
|
// Ran off the right of the graph.
|
|
k1end += 2
|
|
} else if y1 > runes2Len {
|
|
// Ran off the bottom of the graph.
|
|
k1start += 2
|
|
} else if front {
|
|
k2Offset := vOffset + delta - k1
|
|
if k2Offset >= 0 && k2Offset < vLength && v2[k2Offset] != -1 {
|
|
// Mirror x2 onto top-left coordinate system.
|
|
x2 := runes1Len - v2[k2Offset]
|
|
if x1 >= x2 {
|
|
// Overlap detected.
|
|
return dmp.diffBisectSplit(runes1, runes2, x1, y1, deadline)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Walk the reverse path one step.
|
|
for k2 := -d + k2start; k2 <= d-k2end; k2 += 2 {
|
|
k2Offset := vOffset + k2
|
|
var x2 int
|
|
if k2 == -d || (k2 != d && v2[k2Offset-1] < v2[k2Offset+1]) {
|
|
x2 = v2[k2Offset+1]
|
|
} else {
|
|
x2 = v2[k2Offset-1] + 1
|
|
}
|
|
var y2 = x2 - k2
|
|
for x2 < runes1Len && y2 < runes2Len {
|
|
if runes1[runes1Len-x2-1] != runes2[runes2Len-y2-1] {
|
|
break
|
|
}
|
|
x2++
|
|
y2++
|
|
}
|
|
v2[k2Offset] = x2
|
|
if x2 > runes1Len {
|
|
// Ran off the left of the graph.
|
|
k2end += 2
|
|
} else if y2 > runes2Len {
|
|
// Ran off the top of the graph.
|
|
k2start += 2
|
|
} else if !front {
|
|
k1Offset := vOffset + delta - k2
|
|
if k1Offset >= 0 && k1Offset < vLength && v1[k1Offset] != -1 {
|
|
x1 := v1[k1Offset]
|
|
y1 := vOffset + x1 - k1Offset
|
|
// Mirror x2 onto top-left coordinate system.
|
|
x2 = runes1Len - x2
|
|
if x1 >= x2 {
|
|
// Overlap detected.
|
|
return dmp.diffBisectSplit(runes1, runes2, x1, y1, deadline)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Diff took too long and hit the deadline or
|
|
// number of diffs equals number of characters, no commonality at all.
|
|
return []Diff{
|
|
Diff{DiffDelete, string(runes1)},
|
|
Diff{DiffInsert, string(runes2)},
|
|
}
|
|
}
|
|
|
|
func (dmp *DiffMatchPatch) diffBisectSplit(runes1, runes2 []rune, x, y int,
|
|
deadline time.Time) []Diff {
|
|
runes1a := runes1[:x]
|
|
runes2a := runes2[:y]
|
|
runes1b := runes1[x:]
|
|
runes2b := runes2[y:]
|
|
|
|
// Compute both diffs serially.
|
|
diffs := dmp.diffMainRunes(runes1a, runes2a, false, deadline)
|
|
diffsb := dmp.diffMainRunes(runes1b, runes2b, false, deadline)
|
|
|
|
return append(diffs, diffsb...)
|
|
}
|
|
|
|
// DiffLinesToChars splits two texts into a list of strings. Reduces the texts to a string of
|
|
// hashes where each Unicode character represents one line.
|
|
// It's slightly faster to call DiffLinesToRunes first, followed by DiffMainRunes.
|
|
func (dmp *DiffMatchPatch) DiffLinesToChars(text1, text2 string) (string, string, []string) {
|
|
chars1, chars2, lineArray := dmp.DiffLinesToRunes(text1, text2)
|
|
return string(chars1), string(chars2), lineArray
|
|
}
|
|
|
|
// DiffLinesToRunes splits two texts into a list of runes. Each rune represents one line.
|
|
func (dmp *DiffMatchPatch) DiffLinesToRunes(text1, text2 string) ([]rune, []rune, []string) {
|
|
// '\x00' is a valid character, but various debuggers don't like it.
|
|
// So we'll insert a junk entry to avoid generating a null character.
|
|
lineArray := []string{""} // e.g. lineArray[4] == 'Hello\n'
|
|
lineHash := map[string]int{} // e.g. lineHash['Hello\n'] == 4
|
|
|
|
chars1 := dmp.diffLinesToRunesMunge(text1, &lineArray, lineHash)
|
|
chars2 := dmp.diffLinesToRunesMunge(text2, &lineArray, lineHash)
|
|
|
|
return chars1, chars2, lineArray
|
|
}
|
|
|
|
func (dmp *DiffMatchPatch) diffLinesToRunes(text1, text2 []rune) ([]rune, []rune, []string) {
|
|
return dmp.DiffLinesToRunes(string(text1), string(text2))
|
|
}
|
|
|
|
// diffLinesToRunesMunge splits a text into an array of strings. Reduces the
|
|
// texts to a []rune where each Unicode character represents one line.
|
|
// We use strings instead of []runes as input mainly because you can't use []rune as a map key.
|
|
func (dmp *DiffMatchPatch) diffLinesToRunesMunge(text string, lineArray *[]string, lineHash map[string]int) []rune {
|
|
// Walk the text, pulling out a substring for each line.
|
|
// text.split('\n') would would temporarily double our memory footprint.
|
|
// Modifying text would create many large strings to garbage collect.
|
|
lineStart := 0
|
|
lineEnd := -1
|
|
runes := []rune{}
|
|
|
|
for lineEnd < len(text)-1 {
|
|
lineEnd = indexOf(text, "\n", lineStart)
|
|
|
|
if lineEnd == -1 {
|
|
lineEnd = len(text) - 1
|
|
}
|
|
|
|
line := text[lineStart : lineEnd+1]
|
|
lineStart = lineEnd + 1
|
|
lineValue, ok := lineHash[line]
|
|
|
|
if ok {
|
|
runes = append(runes, rune(lineValue))
|
|
} else {
|
|
*lineArray = append(*lineArray, line)
|
|
lineHash[line] = len(*lineArray) - 1
|
|
runes = append(runes, rune(len(*lineArray)-1))
|
|
}
|
|
}
|
|
|
|
return runes
|
|
}
|
|
|
|
// DiffCharsToLines rehydrates the text in a diff from a string of line hashes to real lines of
|
|
// text.
|
|
func (dmp *DiffMatchPatch) DiffCharsToLines(diffs []Diff, lineArray []string) []Diff {
|
|
hydrated := make([]Diff, 0, len(diffs))
|
|
for _, aDiff := range diffs {
|
|
chars := aDiff.Text
|
|
text := make([]string, len(chars))
|
|
|
|
for i, r := range chars {
|
|
text[i] = lineArray[r]
|
|
}
|
|
|
|
aDiff.Text = strings.Join(text, "")
|
|
hydrated = append(hydrated, aDiff)
|
|
}
|
|
return hydrated
|
|
}
|
|
|
|
// DiffCommonPrefix determines the common prefix length of two strings.
|
|
func (dmp *DiffMatchPatch) DiffCommonPrefix(text1, text2 string) int {
|
|
// Unused in this code, but retained for interface compatibility.
|
|
return commonPrefixLength([]rune(text1), []rune(text2))
|
|
}
|
|
|
|
// DiffCommonSuffix determines the common suffix length of two strings.
|
|
func (dmp *DiffMatchPatch) DiffCommonSuffix(text1, text2 string) int {
|
|
// Unused in this code, but retained for interface compatibility.
|
|
return commonSuffixLength([]rune(text1), []rune(text2))
|
|
}
|
|
|
|
// commonPrefixLength returns the length of the common prefix of two rune slices.
|
|
func commonPrefixLength(text1, text2 []rune) int {
|
|
short, long := text1, text2
|
|
if len(short) > len(long) {
|
|
short, long = long, short
|
|
}
|
|
for i, r := range short {
|
|
if r != long[i] {
|
|
return i
|
|
}
|
|
}
|
|
return len(short)
|
|
}
|
|
|
|
// commonSuffixLength returns the length of the common suffix of two rune slices.
|
|
func commonSuffixLength(text1, text2 []rune) int {
|
|
n := min(len(text1), len(text2))
|
|
for i := 0; i < n; i++ {
|
|
if text1[len(text1)-i-1] != text2[len(text2)-i-1] {
|
|
return i
|
|
}
|
|
}
|
|
return n
|
|
|
|
// Binary search.
|
|
// Performance analysis: http://neil.fraser.name/news/2007/10/09/
|
|
/*
|
|
pointermin := 0
|
|
pointermax := math.Min(len(text1), len(text2))
|
|
pointermid := pointermax
|
|
pointerend := 0
|
|
for pointermin < pointermid {
|
|
if text1[len(text1)-pointermid:len(text1)-pointerend] ==
|
|
text2[len(text2)-pointermid:len(text2)-pointerend] {
|
|
pointermin = pointermid
|
|
pointerend = pointermin
|
|
} else {
|
|
pointermax = pointermid
|
|
}
|
|
pointermid = math.Floor((pointermax-pointermin)/2 + pointermin)
|
|
}
|
|
return pointermid
|
|
*/
|
|
}
|
|
|
|
// DiffCommonOverlap determines if the suffix of one string is the prefix of another.
|
|
func (dmp *DiffMatchPatch) DiffCommonOverlap(text1 string, text2 string) int {
|
|
// Cache the text lengths to prevent multiple calls.
|
|
text1Length := len(text1)
|
|
text2Length := len(text2)
|
|
// Eliminate the null case.
|
|
if text1Length == 0 || text2Length == 0 {
|
|
return 0
|
|
}
|
|
// Truncate the longer string.
|
|
if text1Length > text2Length {
|
|
text1 = text1[text1Length-text2Length:]
|
|
} else if text1Length < text2Length {
|
|
text2 = text2[0:text1Length]
|
|
}
|
|
textLength := int(math.Min(float64(text1Length), float64(text2Length)))
|
|
// Quick check for the worst case.
|
|
if text1 == text2 {
|
|
return textLength
|
|
}
|
|
|
|
// Start by looking for a single character match
|
|
// and increase length until no match is found.
|
|
// Performance analysis: http://neil.fraser.name/news/2010/11/04/
|
|
best := 0
|
|
length := 1
|
|
for {
|
|
pattern := text1[textLength-length:]
|
|
found := strings.Index(text2, pattern)
|
|
if found == -1 {
|
|
break
|
|
}
|
|
length += found
|
|
if found == 0 || text1[textLength-length:] == text2[0:length] {
|
|
best = length
|
|
length++
|
|
}
|
|
}
|
|
|
|
return best
|
|
}
|
|
|
|
// DiffHalfMatch checks whether the two texts share a substring which is at
|
|
// least half the length of the longer text. This speedup can produce non-minimal diffs.
|
|
func (dmp *DiffMatchPatch) DiffHalfMatch(text1, text2 string) []string {
|
|
// Unused in this code, but retained for interface compatibility.
|
|
runeSlices := dmp.diffHalfMatch([]rune(text1), []rune(text2))
|
|
if runeSlices == nil {
|
|
return nil
|
|
}
|
|
|
|
result := make([]string, len(runeSlices))
|
|
for i, r := range runeSlices {
|
|
result[i] = string(r)
|
|
}
|
|
return result
|
|
}
|
|
|
|
func (dmp *DiffMatchPatch) diffHalfMatch(text1, text2 []rune) [][]rune {
|
|
if dmp.DiffTimeout <= 0 {
|
|
// Don't risk returning a non-optimal diff if we have unlimited time.
|
|
return nil
|
|
}
|
|
|
|
var longtext, shorttext []rune
|
|
if len(text1) > len(text2) {
|
|
longtext = text1
|
|
shorttext = text2
|
|
} else {
|
|
longtext = text2
|
|
shorttext = text1
|
|
}
|
|
|
|
if len(longtext) < 4 || len(shorttext)*2 < len(longtext) {
|
|
return nil // Pointless.
|
|
}
|
|
|
|
// First check if the second quarter is the seed for a half-match.
|
|
hm1 := dmp.diffHalfMatchI(longtext, shorttext, int(float64(len(longtext)+3)/4))
|
|
|
|
// Check again based on the third quarter.
|
|
hm2 := dmp.diffHalfMatchI(longtext, shorttext, int(float64(len(longtext)+1)/2))
|
|
|
|
hm := [][]rune{}
|
|
if hm1 == nil && hm2 == nil {
|
|
return nil
|
|
} else if hm2 == nil {
|
|
hm = hm1
|
|
} else if hm1 == nil {
|
|
hm = hm2
|
|
} else {
|
|
// Both matched. Select the longest.
|
|
if len(hm1[4]) > len(hm2[4]) {
|
|
hm = hm1
|
|
} else {
|
|
hm = hm2
|
|
}
|
|
}
|
|
|
|
// A half-match was found, sort out the return data.
|
|
if len(text1) > len(text2) {
|
|
return hm
|
|
}
|
|
|
|
return [][]rune{hm[2], hm[3], hm[0], hm[1], hm[4]}
|
|
}
|
|
|
|
// diffHalfMatchI checks if a substring of shorttext exist within longtext such that the substring is at least half the length of longtext?
|
|
// @param {string} longtext Longer string.
|
|
// @param {string} shorttext Shorter string.
|
|
// @param {number} i Start index of quarter length substring within longtext.
|
|
// @return {Array.<string>} Five element Array, containing the prefix of
|
|
// longtext, the suffix of longtext, the prefix of shorttext, the suffix
|
|
// of shorttext and the common middle. Or null if there was no match.
|
|
func (dmp *DiffMatchPatch) diffHalfMatchI(l, s []rune, i int) [][]rune {
|
|
var bestCommonA []rune
|
|
var bestCommonB []rune
|
|
var bestCommonLen int
|
|
var bestLongtextA []rune
|
|
var bestLongtextB []rune
|
|
var bestShorttextA []rune
|
|
var bestShorttextB []rune
|
|
|
|
// Start with a 1/4 length substring at position i as a seed.
|
|
seed := l[i : i+len(l)/4]
|
|
|
|
for j := runesIndexOf(s, seed, 0); j != -1; j = runesIndexOf(s, seed, j+1) {
|
|
prefixLength := commonPrefixLength(l[i:], s[j:])
|
|
suffixLength := commonSuffixLength(l[:i], s[:j])
|
|
|
|
if bestCommonLen < suffixLength+prefixLength {
|
|
bestCommonA = s[j-suffixLength : j]
|
|
bestCommonB = s[j : j+prefixLength]
|
|
bestCommonLen = len(bestCommonA) + len(bestCommonB)
|
|
bestLongtextA = l[:i-suffixLength]
|
|
bestLongtextB = l[i+prefixLength:]
|
|
bestShorttextA = s[:j-suffixLength]
|
|
bestShorttextB = s[j+prefixLength:]
|
|
}
|
|
}
|
|
|
|
if bestCommonLen*2 < len(l) {
|
|
return nil
|
|
}
|
|
|
|
return [][]rune{
|
|
bestLongtextA,
|
|
bestLongtextB,
|
|
bestShorttextA,
|
|
bestShorttextB,
|
|
append(bestCommonA, bestCommonB...),
|
|
}
|
|
}
|
|
|
|
// DiffCleanupSemantic reduces the number of edits by eliminating
|
|
// semantically trivial equalities.
|
|
func (dmp *DiffMatchPatch) DiffCleanupSemantic(diffs []Diff) []Diff {
|
|
changes := false
|
|
// Stack of indices where equalities are found.
|
|
type equality struct {
|
|
data int
|
|
next *equality
|
|
}
|
|
var equalities *equality
|
|
|
|
var lastequality string
|
|
// Always equal to diffs[equalities[equalitiesLength - 1]][1]
|
|
var pointer int // Index of current position.
|
|
// Number of characters that changed prior to the equality.
|
|
var lengthInsertions1, lengthDeletions1 int
|
|
// Number of characters that changed after the equality.
|
|
var lengthInsertions2, lengthDeletions2 int
|
|
|
|
for pointer < len(diffs) {
|
|
if diffs[pointer].Type == DiffEqual { // Equality found.
|
|
equalities = &equality{
|
|
data: pointer,
|
|
next: equalities,
|
|
}
|
|
lengthInsertions1 = lengthInsertions2
|
|
lengthDeletions1 = lengthDeletions2
|
|
lengthInsertions2 = 0
|
|
lengthDeletions2 = 0
|
|
lastequality = diffs[pointer].Text
|
|
} else { // An insertion or deletion.
|
|
if diffs[pointer].Type == DiffInsert {
|
|
lengthInsertions2 += len(diffs[pointer].Text)
|
|
} else {
|
|
lengthDeletions2 += len(diffs[pointer].Text)
|
|
}
|
|
// Eliminate an equality that is smaller or equal to the edits on both
|
|
// sides of it.
|
|
difference1 := int(math.Max(float64(lengthInsertions1), float64(lengthDeletions1)))
|
|
difference2 := int(math.Max(float64(lengthInsertions2), float64(lengthDeletions2)))
|
|
if len(lastequality) > 0 &&
|
|
(len(lastequality) <= difference1) &&
|
|
(len(lastequality) <= difference2) {
|
|
// Duplicate record.
|
|
insPoint := equalities.data
|
|
diffs = append(
|
|
diffs[:insPoint],
|
|
append([]Diff{Diff{DiffDelete, lastequality}}, diffs[insPoint:]...)...)
|
|
|
|
// Change second copy to insert.
|
|
diffs[insPoint+1].Type = DiffInsert
|
|
// Throw away the equality we just deleted.
|
|
equalities = equalities.next
|
|
|
|
if equalities != nil {
|
|
equalities = equalities.next
|
|
}
|
|
if equalities != nil {
|
|
pointer = equalities.data
|
|
} else {
|
|
pointer = -1
|
|
}
|
|
|
|
lengthInsertions1 = 0 // Reset the counters.
|
|
lengthDeletions1 = 0
|
|
lengthInsertions2 = 0
|
|
lengthDeletions2 = 0
|
|
lastequality = ""
|
|
changes = true
|
|
}
|
|
}
|
|
pointer++
|
|
}
|
|
|
|
// Normalize the diff.
|
|
if changes {
|
|
diffs = dmp.DiffCleanupMerge(diffs)
|
|
}
|
|
diffs = dmp.DiffCleanupSemanticLossless(diffs)
|
|
// Find any overlaps between deletions and insertions.
|
|
// e.g: <del>abcxxx</del><ins>xxxdef</ins>
|
|
// -> <del>abc</del>xxx<ins>def</ins>
|
|
// e.g: <del>xxxabc</del><ins>defxxx</ins>
|
|
// -> <ins>def</ins>xxx<del>abc</del>
|
|
// Only extract an overlap if it is as big as the edit ahead or behind it.
|
|
pointer = 1
|
|
for pointer < len(diffs) {
|
|
if diffs[pointer-1].Type == DiffDelete &&
|
|
diffs[pointer].Type == DiffInsert {
|
|
deletion := diffs[pointer-1].Text
|
|
insertion := diffs[pointer].Text
|
|
overlapLength1 := dmp.DiffCommonOverlap(deletion, insertion)
|
|
overlapLength2 := dmp.DiffCommonOverlap(insertion, deletion)
|
|
if overlapLength1 >= overlapLength2 {
|
|
if float64(overlapLength1) >= float64(len(deletion))/2 ||
|
|
float64(overlapLength1) >= float64(len(insertion))/2 {
|
|
|
|
// Overlap found. Insert an equality and trim the surrounding edits.
|
|
diffs = append(
|
|
diffs[:pointer],
|
|
append([]Diff{Diff{DiffEqual, insertion[:overlapLength1]}}, diffs[pointer:]...)...)
|
|
//diffs.splice(pointer, 0,
|
|
// [DiffEqual, insertion[0 : overlapLength1)]]
|
|
diffs[pointer-1].Text =
|
|
deletion[0 : len(deletion)-overlapLength1]
|
|
diffs[pointer+1].Text = insertion[overlapLength1:]
|
|
pointer++
|
|
}
|
|
} else {
|
|
if float64(overlapLength2) >= float64(len(deletion))/2 ||
|
|
float64(overlapLength2) >= float64(len(insertion))/2 {
|
|
// Reverse overlap found.
|
|
// Insert an equality and swap and trim the surrounding edits.
|
|
overlap := Diff{DiffEqual, deletion[:overlapLength2]}
|
|
diffs = append(
|
|
diffs[:pointer],
|
|
append([]Diff{overlap}, diffs[pointer:]...)...)
|
|
// diffs.splice(pointer, 0,
|
|
// [DiffEqual, deletion[0 : overlapLength2)]]
|
|
diffs[pointer-1].Type = DiffInsert
|
|
diffs[pointer-1].Text = insertion[0 : len(insertion)-overlapLength2]
|
|
diffs[pointer+1].Type = DiffDelete
|
|
diffs[pointer+1].Text = deletion[overlapLength2:]
|
|
pointer++
|
|
}
|
|
}
|
|
pointer++
|
|
}
|
|
pointer++
|
|
}
|
|
|
|
return diffs
|
|
}
|
|
|
|
// DiffCleanupSemanticLossless looks for single edits surrounded on both sides by equalities
|
|
// which can be shifted sideways to align the edit to a word boundary.
|
|
// e.g: The c<ins>at c</ins>ame. -> The <ins>cat </ins>came.
|
|
func (dmp *DiffMatchPatch) DiffCleanupSemanticLossless(diffs []Diff) []Diff {
|
|
|
|
/**
|
|
* Given two strings, compute a score representing whether the internal
|
|
* boundary falls on logical boundaries.
|
|
* Scores range from 6 (best) to 0 (worst).
|
|
* Closure, but does not reference any external variables.
|
|
* @param {string} one First string.
|
|
* @param {string} two Second string.
|
|
* @return {number} The score.
|
|
* @private
|
|
*/
|
|
diffCleanupSemanticScore := func(one, two string) int {
|
|
if len(one) == 0 || len(two) == 0 {
|
|
// Edges are the best.
|
|
return 6
|
|
}
|
|
|
|
// Each port of this function behaves slightly differently due to
|
|
// subtle differences in each language's definition of things like
|
|
// 'whitespace'. Since this function's purpose is largely cosmetic,
|
|
// the choice has been made to use each language's native features
|
|
// rather than force total conformity.
|
|
rune1, _ := utf8.DecodeLastRuneInString(one)
|
|
rune2, _ := utf8.DecodeRuneInString(two)
|
|
char1 := string(rune1)
|
|
char2 := string(rune2)
|
|
|
|
nonAlphaNumeric1 := nonAlphaNumericRegex.MatchString(char1)
|
|
nonAlphaNumeric2 := nonAlphaNumericRegex.MatchString(char2)
|
|
whitespace1 := nonAlphaNumeric1 && whitespaceRegex.MatchString(char1)
|
|
whitespace2 := nonAlphaNumeric2 && whitespaceRegex.MatchString(char2)
|
|
lineBreak1 := whitespace1 && linebreakRegex.MatchString(char1)
|
|
lineBreak2 := whitespace2 && linebreakRegex.MatchString(char2)
|
|
blankLine1 := lineBreak1 && blanklineEndRegex.MatchString(one)
|
|
blankLine2 := lineBreak2 && blanklineEndRegex.MatchString(two)
|
|
|
|
if blankLine1 || blankLine2 {
|
|
// Five points for blank lines.
|
|
return 5
|
|
} else if lineBreak1 || lineBreak2 {
|
|
// Four points for line breaks.
|
|
return 4
|
|
} else if nonAlphaNumeric1 && !whitespace1 && whitespace2 {
|
|
// Three points for end of sentences.
|
|
return 3
|
|
} else if whitespace1 || whitespace2 {
|
|
// Two points for whitespace.
|
|
return 2
|
|
} else if nonAlphaNumeric1 || nonAlphaNumeric2 {
|
|
// One point for non-alphanumeric.
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
pointer := 1
|
|
|
|
// Intentionally ignore the first and last element (don't need checking).
|
|
for pointer < len(diffs)-1 {
|
|
if diffs[pointer-1].Type == DiffEqual &&
|
|
diffs[pointer+1].Type == DiffEqual {
|
|
|
|
// This is a single edit surrounded by equalities.
|
|
equality1 := diffs[pointer-1].Text
|
|
edit := diffs[pointer].Text
|
|
equality2 := diffs[pointer+1].Text
|
|
|
|
// First, shift the edit as far left as possible.
|
|
commonOffset := dmp.DiffCommonSuffix(equality1, edit)
|
|
if commonOffset > 0 {
|
|
commonString := edit[len(edit)-commonOffset:]
|
|
equality1 = equality1[0 : len(equality1)-commonOffset]
|
|
edit = commonString + edit[:len(edit)-commonOffset]
|
|
equality2 = commonString + equality2
|
|
}
|
|
|
|
// Second, step character by character right, looking for the best fit.
|
|
bestEquality1 := equality1
|
|
bestEdit := edit
|
|
bestEquality2 := equality2
|
|
bestScore := diffCleanupSemanticScore(equality1, edit) +
|
|
diffCleanupSemanticScore(edit, equality2)
|
|
|
|
for len(edit) != 0 && len(equality2) != 0 {
|
|
_, sz := utf8.DecodeRuneInString(edit)
|
|
if len(equality2) < sz || edit[:sz] != equality2[:sz] {
|
|
break
|
|
}
|
|
equality1 += edit[:sz]
|
|
edit = edit[sz:] + equality2[:sz]
|
|
equality2 = equality2[sz:]
|
|
score := diffCleanupSemanticScore(equality1, edit) +
|
|
diffCleanupSemanticScore(edit, equality2)
|
|
// The >= encourages trailing rather than leading whitespace on
|
|
// edits.
|
|
if score >= bestScore {
|
|
bestScore = score
|
|
bestEquality1 = equality1
|
|
bestEdit = edit
|
|
bestEquality2 = equality2
|
|
}
|
|
}
|
|
|
|
if diffs[pointer-1].Text != bestEquality1 {
|
|
// We have an improvement, save it back to the diff.
|
|
if len(bestEquality1) != 0 {
|
|
diffs[pointer-1].Text = bestEquality1
|
|
} else {
|
|
diffs = splice(diffs, pointer-1, 1)
|
|
pointer--
|
|
}
|
|
|
|
diffs[pointer].Text = bestEdit
|
|
if len(bestEquality2) != 0 {
|
|
diffs[pointer+1].Text = bestEquality2
|
|
} else {
|
|
//splice(diffs, pointer+1, 1)
|
|
diffs = append(diffs[:pointer+1], diffs[pointer+2:]...)
|
|
pointer--
|
|
}
|
|
}
|
|
}
|
|
pointer++
|
|
}
|
|
|
|
return diffs
|
|
}
|
|
|
|
// DiffCleanupEfficiency reduces the number of edits by eliminating
|
|
// operationally trivial equalities.
|
|
func (dmp *DiffMatchPatch) DiffCleanupEfficiency(diffs []Diff) []Diff {
|
|
changes := false
|
|
// Stack of indices where equalities are found.
|
|
type equality struct {
|
|
data int
|
|
next *equality
|
|
}
|
|
var equalities *equality
|
|
// Always equal to equalities[equalitiesLength-1][1]
|
|
lastequality := ""
|
|
pointer := 0 // Index of current position.
|
|
// Is there an insertion operation before the last equality.
|
|
preIns := false
|
|
// Is there a deletion operation before the last equality.
|
|
preDel := false
|
|
// Is there an insertion operation after the last equality.
|
|
postIns := false
|
|
// Is there a deletion operation after the last equality.
|
|
postDel := false
|
|
for pointer < len(diffs) {
|
|
if diffs[pointer].Type == DiffEqual { // Equality found.
|
|
if len(diffs[pointer].Text) < dmp.DiffEditCost &&
|
|
(postIns || postDel) {
|
|
// Candidate found.
|
|
equalities = &equality{
|
|
data: pointer,
|
|
next: equalities,
|
|
}
|
|
preIns = postIns
|
|
preDel = postDel
|
|
lastequality = diffs[pointer].Text
|
|
} else {
|
|
// Not a candidate, and can never become one.
|
|
equalities = nil
|
|
lastequality = ""
|
|
}
|
|
postIns = false
|
|
postDel = false
|
|
} else { // An insertion or deletion.
|
|
if diffs[pointer].Type == DiffDelete {
|
|
postDel = true
|
|
} else {
|
|
postIns = true
|
|
}
|
|
/*
|
|
* Five types to be split:
|
|
* <ins>A</ins><del>B</del>XY<ins>C</ins><del>D</del>
|
|
* <ins>A</ins>X<ins>C</ins><del>D</del>
|
|
* <ins>A</ins><del>B</del>X<ins>C</ins>
|
|
* <ins>A</del>X<ins>C</ins><del>D</del>
|
|
* <ins>A</ins><del>B</del>X<del>C</del>
|
|
*/
|
|
var sumPres int
|
|
if preIns {
|
|
sumPres++
|
|
}
|
|
if preDel {
|
|
sumPres++
|
|
}
|
|
if postIns {
|
|
sumPres++
|
|
}
|
|
if postDel {
|
|
sumPres++
|
|
}
|
|
if len(lastequality) > 0 &&
|
|
((preIns && preDel && postIns && postDel) ||
|
|
((len(lastequality) < dmp.DiffEditCost/2) && sumPres == 3)) {
|
|
|
|
insPoint := equalities.data
|
|
|
|
// Duplicate record.
|
|
diffs = append(diffs[:insPoint],
|
|
append([]Diff{Diff{DiffDelete, lastequality}}, diffs[insPoint:]...)...)
|
|
|
|
// Change second copy to insert.
|
|
diffs[insPoint+1].Type = DiffInsert
|
|
// Throw away the equality we just deleted.
|
|
equalities = equalities.next
|
|
lastequality = ""
|
|
|
|
if preIns && preDel {
|
|
// No changes made which could affect previous entry, keep going.
|
|
postIns = true
|
|
postDel = true
|
|
equalities = nil
|
|
} else {
|
|
if equalities != nil {
|
|
equalities = equalities.next
|
|
}
|
|
if equalities != nil {
|
|
pointer = equalities.data
|
|
} else {
|
|
pointer = -1
|
|
}
|
|
postIns = false
|
|
postDel = false
|
|
}
|
|
changes = true
|
|
}
|
|
}
|
|
pointer++
|
|
}
|
|
|
|
if changes {
|
|
diffs = dmp.DiffCleanupMerge(diffs)
|
|
}
|
|
|
|
return diffs
|
|
}
|
|
|
|
// DiffCleanupMerge reorders and merges like edit sections. Merge equalities.
|
|
// Any edit section can move as long as it doesn't cross an equality.
|
|
func (dmp *DiffMatchPatch) DiffCleanupMerge(diffs []Diff) []Diff {
|
|
// Add a dummy entry at the end.
|
|
diffs = append(diffs, Diff{DiffEqual, ""})
|
|
pointer := 0
|
|
countDelete := 0
|
|
countInsert := 0
|
|
commonlength := 0
|
|
textDelete := []rune(nil)
|
|
textInsert := []rune(nil)
|
|
|
|
for pointer < len(diffs) {
|
|
switch diffs[pointer].Type {
|
|
case DiffInsert:
|
|
countInsert++
|
|
textInsert = append(textInsert, []rune(diffs[pointer].Text)...)
|
|
pointer++
|
|
break
|
|
case DiffDelete:
|
|
countDelete++
|
|
textDelete = append(textDelete, []rune(diffs[pointer].Text)...)
|
|
pointer++
|
|
break
|
|
case DiffEqual:
|
|
// Upon reaching an equality, check for prior redundancies.
|
|
if countDelete+countInsert > 1 {
|
|
if countDelete != 0 && countInsert != 0 {
|
|
// Factor out any common prefixies.
|
|
commonlength = commonPrefixLength(textInsert, textDelete)
|
|
if commonlength != 0 {
|
|
x := pointer - countDelete - countInsert
|
|
if x > 0 && diffs[x-1].Type == DiffEqual {
|
|
diffs[x-1].Text += string(textInsert[:commonlength])
|
|
} else {
|
|
diffs = append([]Diff{Diff{DiffEqual, string(textInsert[:commonlength])}}, diffs...)
|
|
pointer++
|
|
}
|
|
textInsert = textInsert[commonlength:]
|
|
textDelete = textDelete[commonlength:]
|
|
}
|
|
// Factor out any common suffixies.
|
|
commonlength = commonSuffixLength(textInsert, textDelete)
|
|
if commonlength != 0 {
|
|
insertIndex := len(textInsert) - commonlength
|
|
deleteIndex := len(textDelete) - commonlength
|
|
diffs[pointer].Text = string(textInsert[insertIndex:]) + diffs[pointer].Text
|
|
textInsert = textInsert[:insertIndex]
|
|
textDelete = textDelete[:deleteIndex]
|
|
}
|
|
}
|
|
// Delete the offending records and add the merged ones.
|
|
if countDelete == 0 {
|
|
diffs = splice(diffs, pointer-countInsert,
|
|
countDelete+countInsert,
|
|
Diff{DiffInsert, string(textInsert)})
|
|
} else if countInsert == 0 {
|
|
diffs = splice(diffs, pointer-countDelete,
|
|
countDelete+countInsert,
|
|
Diff{DiffDelete, string(textDelete)})
|
|
} else {
|
|
diffs = splice(diffs, pointer-countDelete-countInsert,
|
|
countDelete+countInsert,
|
|
Diff{DiffDelete, string(textDelete)},
|
|
Diff{DiffInsert, string(textInsert)})
|
|
}
|
|
|
|
pointer = pointer - countDelete - countInsert + 1
|
|
if countDelete != 0 {
|
|
pointer++
|
|
}
|
|
if countInsert != 0 {
|
|
pointer++
|
|
}
|
|
} else if pointer != 0 && diffs[pointer-1].Type == DiffEqual {
|
|
// Merge this equality with the previous one.
|
|
diffs[pointer-1].Text += diffs[pointer].Text
|
|
diffs = append(diffs[:pointer], diffs[pointer+1:]...)
|
|
} else {
|
|
pointer++
|
|
}
|
|
countInsert = 0
|
|
countDelete = 0
|
|
textDelete = nil
|
|
textInsert = nil
|
|
break
|
|
}
|
|
}
|
|
|
|
if len(diffs[len(diffs)-1].Text) == 0 {
|
|
diffs = diffs[0 : len(diffs)-1] // Remove the dummy entry at the end.
|
|
}
|
|
|
|
// Second pass: look for single edits surrounded on both sides by
|
|
// equalities which can be shifted sideways to eliminate an equality.
|
|
// e.g: A<ins>BA</ins>C -> <ins>AB</ins>AC
|
|
changes := false
|
|
pointer = 1
|
|
// Intentionally ignore the first and last element (don't need checking).
|
|
for pointer < (len(diffs) - 1) {
|
|
if diffs[pointer-1].Type == DiffEqual &&
|
|
diffs[pointer+1].Type == DiffEqual {
|
|
// This is a single edit surrounded by equalities.
|
|
if strings.HasSuffix(diffs[pointer].Text, diffs[pointer-1].Text) {
|
|
// Shift the edit over the previous equality.
|
|
diffs[pointer].Text = diffs[pointer-1].Text +
|
|
diffs[pointer].Text[:len(diffs[pointer].Text)-len(diffs[pointer-1].Text)]
|
|
diffs[pointer+1].Text = diffs[pointer-1].Text + diffs[pointer+1].Text
|
|
diffs = splice(diffs, pointer-1, 1)
|
|
changes = true
|
|
} else if strings.HasPrefix(diffs[pointer].Text, diffs[pointer+1].Text) {
|
|
// Shift the edit over the next equality.
|
|
diffs[pointer-1].Text += diffs[pointer+1].Text
|
|
diffs[pointer].Text =
|
|
diffs[pointer].Text[len(diffs[pointer+1].Text):] + diffs[pointer+1].Text
|
|
diffs = splice(diffs, pointer+1, 1)
|
|
changes = true
|
|
}
|
|
}
|
|
pointer++
|
|
}
|
|
|
|
// If shifts were made, the diff needs reordering and another shift sweep.
|
|
if changes {
|
|
diffs = dmp.DiffCleanupMerge(diffs)
|
|
}
|
|
|
|
return diffs
|
|
}
|
|
|
|
// DiffXIndex returns the equivalent location in s2.
|
|
// loc is a location in text1, comAdde and return the equivalent location in
|
|
// text2.
|
|
// e.g. "The cat" vs "The big cat", 1->1, 5->8
|
|
func (dmp *DiffMatchPatch) DiffXIndex(diffs []Diff, loc int) int {
|
|
chars1 := 0
|
|
chars2 := 0
|
|
lastChars1 := 0
|
|
lastChars2 := 0
|
|
lastDiff := Diff{}
|
|
for i := 0; i < len(diffs); i++ {
|
|
aDiff := diffs[i]
|
|
if aDiff.Type != DiffInsert {
|
|
// Equality or deletion.
|
|
chars1 += len(aDiff.Text)
|
|
}
|
|
if aDiff.Type != DiffDelete {
|
|
// Equality or insertion.
|
|
chars2 += len(aDiff.Text)
|
|
}
|
|
if chars1 > loc {
|
|
// Overshot the location.
|
|
lastDiff = aDiff
|
|
break
|
|
}
|
|
lastChars1 = chars1
|
|
lastChars2 = chars2
|
|
}
|
|
if lastDiff.Type == DiffDelete {
|
|
// The location was deleted.
|
|
return lastChars2
|
|
}
|
|
// Add the remaining character length.
|
|
return lastChars2 + (loc - lastChars1)
|
|
}
|
|
|
|
// DiffPrettyHtml converts a []Diff into a pretty HTML report.
|
|
// It is intended as an example from which to write one's own
|
|
// display functions.
|
|
func (dmp *DiffMatchPatch) DiffPrettyHtml(diffs []Diff) string {
|
|
var buff bytes.Buffer
|
|
for _, diff := range diffs {
|
|
text := strings.Replace(html.EscapeString(diff.Text), "\n", "¶<br>", -1)
|
|
switch diff.Type {
|
|
case DiffInsert:
|
|
_, _ = buff.WriteString("<ins style=\"background:#e6ffe6;\">")
|
|
_, _ = buff.WriteString(text)
|
|
_, _ = buff.WriteString("</ins>")
|
|
case DiffDelete:
|
|
_, _ = buff.WriteString("<del style=\"background:#ffe6e6;\">")
|
|
_, _ = buff.WriteString(text)
|
|
_, _ = buff.WriteString("</del>")
|
|
case DiffEqual:
|
|
_, _ = buff.WriteString("<span>")
|
|
_, _ = buff.WriteString(text)
|
|
_, _ = buff.WriteString("</span>")
|
|
}
|
|
}
|
|
return buff.String()
|
|
}
|
|
|
|
// DiffPrettyText converts a []Diff into a colored text report.
|
|
func (dmp *DiffMatchPatch) DiffPrettyText(diffs []Diff) string {
|
|
var buff bytes.Buffer
|
|
for _, diff := range diffs {
|
|
text := diff.Text
|
|
|
|
switch diff.Type {
|
|
case DiffInsert:
|
|
_, _ = buff.WriteString("\x1b[32m")
|
|
_, _ = buff.WriteString(text)
|
|
_, _ = buff.WriteString("\x1b[0m")
|
|
case DiffDelete:
|
|
_, _ = buff.WriteString("\x1b[31m")
|
|
_, _ = buff.WriteString(text)
|
|
_, _ = buff.WriteString("\x1b[0m")
|
|
case DiffEqual:
|
|
_, _ = buff.WriteString(text)
|
|
}
|
|
}
|
|
|
|
return buff.String()
|
|
}
|
|
|
|
// DiffText1 computes and returns the source text (all equalities and deletions).
|
|
func (dmp *DiffMatchPatch) DiffText1(diffs []Diff) string {
|
|
//StringBuilder text = new StringBuilder()
|
|
var text bytes.Buffer
|
|
|
|
for _, aDiff := range diffs {
|
|
if aDiff.Type != DiffInsert {
|
|
_, _ = text.WriteString(aDiff.Text)
|
|
}
|
|
}
|
|
return text.String()
|
|
}
|
|
|
|
// DiffText2 computes and returns the destination text (all equalities and insertions).
|
|
func (dmp *DiffMatchPatch) DiffText2(diffs []Diff) string {
|
|
var text bytes.Buffer
|
|
|
|
for _, aDiff := range diffs {
|
|
if aDiff.Type != DiffDelete {
|
|
_, _ = text.WriteString(aDiff.Text)
|
|
}
|
|
}
|
|
return text.String()
|
|
}
|
|
|
|
// DiffLevenshtein computes the Levenshtein distance; the number of inserted, deleted or
|
|
// substituted characters.
|
|
func (dmp *DiffMatchPatch) DiffLevenshtein(diffs []Diff) int {
|
|
levenshtein := 0
|
|
insertions := 0
|
|
deletions := 0
|
|
|
|
for _, aDiff := range diffs {
|
|
switch aDiff.Type {
|
|
case DiffInsert:
|
|
insertions += len(aDiff.Text)
|
|
case DiffDelete:
|
|
deletions += len(aDiff.Text)
|
|
case DiffEqual:
|
|
// A deletion and an insertion is one substitution.
|
|
levenshtein += max(insertions, deletions)
|
|
insertions = 0
|
|
deletions = 0
|
|
}
|
|
}
|
|
|
|
levenshtein += max(insertions, deletions)
|
|
return levenshtein
|
|
}
|
|
|
|
// DiffToDelta crushes the diff into an encoded string which describes the operations
|
|
// required to transform text1 into text2.
|
|
// E.g. =3\t-2\t+ing -> Keep 3 chars, delete 2 chars, insert 'ing'.
|
|
// Operations are tab-separated. Inserted text is escaped using %xx
|
|
// notation.
|
|
func (dmp *DiffMatchPatch) DiffToDelta(diffs []Diff) string {
|
|
var text bytes.Buffer
|
|
for _, aDiff := range diffs {
|
|
switch aDiff.Type {
|
|
case DiffInsert:
|
|
_, _ = text.WriteString("+")
|
|
_, _ = text.WriteString(strings.Replace(url.QueryEscape(aDiff.Text), "+", " ", -1))
|
|
_, _ = text.WriteString("\t")
|
|
break
|
|
case DiffDelete:
|
|
_, _ = text.WriteString("-")
|
|
_, _ = text.WriteString(strconv.Itoa(utf8.RuneCountInString(aDiff.Text)))
|
|
_, _ = text.WriteString("\t")
|
|
break
|
|
case DiffEqual:
|
|
_, _ = text.WriteString("=")
|
|
_, _ = text.WriteString(strconv.Itoa(utf8.RuneCountInString(aDiff.Text)))
|
|
_, _ = text.WriteString("\t")
|
|
break
|
|
}
|
|
}
|
|
delta := text.String()
|
|
if len(delta) != 0 {
|
|
// Strip off trailing tab character.
|
|
delta = delta[0 : utf8.RuneCountInString(delta)-1]
|
|
delta = unescaper.Replace(delta)
|
|
}
|
|
return delta
|
|
}
|
|
|
|
// DiffFromDelta given the original text1, and an encoded string which describes the
|
|
// operations required to transform text1 into text2, comAdde the full diff.
|
|
func (dmp *DiffMatchPatch) DiffFromDelta(text1, delta string) (diffs []Diff, err error) {
|
|
diffs = []Diff{}
|
|
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
err = r.(error)
|
|
}
|
|
}()
|
|
|
|
pointer := 0 // Cursor in text1
|
|
tokens := strings.Split(delta, "\t")
|
|
|
|
for _, token := range tokens {
|
|
if len(token) == 0 {
|
|
// Blank tokens are ok (from a trailing \t).
|
|
continue
|
|
}
|
|
|
|
// Each token begins with a one character parameter which specifies the
|
|
// operation of this token (delete, insert, equality).
|
|
param := token[1:]
|
|
|
|
switch op := token[0]; op {
|
|
case '+':
|
|
// decode would Diff all "+" to " "
|
|
param = strings.Replace(param, "+", "%2b", -1)
|
|
param, err = url.QueryUnescape(param)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if !utf8.ValidString(param) {
|
|
return nil, fmt.Errorf("invalid UTF-8 token: %q", param)
|
|
}
|
|
diffs = append(diffs, Diff{DiffInsert, param})
|
|
case '=', '-':
|
|
n, err := strconv.ParseInt(param, 10, 0)
|
|
if err != nil {
|
|
return diffs, err
|
|
} else if n < 0 {
|
|
return diffs, errors.New("Negative number in DiffFromDelta: " + param)
|
|
}
|
|
|
|
// remember that string slicing is by byte - we want by rune here.
|
|
text := string([]rune(text1)[pointer : pointer+int(n)])
|
|
pointer += int(n)
|
|
|
|
if op == '=' {
|
|
diffs = append(diffs, Diff{DiffEqual, text})
|
|
} else {
|
|
diffs = append(diffs, Diff{DiffDelete, text})
|
|
}
|
|
default:
|
|
// Anything else is an error.
|
|
return diffs, errors.New("Invalid diff operation in DiffFromDelta: " + string(token[0]))
|
|
}
|
|
}
|
|
|
|
if pointer != len([]rune(text1)) {
|
|
return diffs, fmt.Errorf("Delta length (%v) smaller than source text length (%v)", pointer, len(text1))
|
|
}
|
|
return diffs, err
|
|
}
|
|
|
|
// MATCH FUNCTIONS
|
|
|
|
// MatchMain locates the best instance of 'pattern' in 'text' near 'loc'.
|
|
// Returns -1 if no match found.
|
|
func (dmp *DiffMatchPatch) MatchMain(text, pattern string, loc int) int {
|
|
// Check for null inputs not needed since null can't be passed in C#.
|
|
|
|
loc = int(math.Max(0, math.Min(float64(loc), float64(len(text)))))
|
|
if text == pattern {
|
|
// Shortcut (potentially not guaranteed by the algorithm)
|
|
return 0
|
|
} else if len(text) == 0 {
|
|
// Nothing to match.
|
|
return -1
|
|
} else if loc+len(pattern) <= len(text) && text[loc:loc+len(pattern)] == pattern {
|
|
// Perfect match at the perfect spot! (Includes case of null pattern)
|
|
return loc
|
|
}
|
|
// Do a fuzzy compare.
|
|
return dmp.MatchBitap(text, pattern, loc)
|
|
}
|
|
|
|
// MatchBitap locates the best instance of 'pattern' in 'text' near 'loc' using the
|
|
// Bitap algorithm. Returns -1 if no match found.
|
|
func (dmp *DiffMatchPatch) MatchBitap(text, pattern string, loc int) int {
|
|
// Initialise the alphabet.
|
|
s := dmp.MatchAlphabet(pattern)
|
|
|
|
// Highest score beyond which we give up.
|
|
scoreThreshold := dmp.MatchThreshold
|
|
// Is there a nearby exact match? (speedup)
|
|
bestLoc := indexOf(text, pattern, loc)
|
|
if bestLoc != -1 {
|
|
scoreThreshold = math.Min(dmp.matchBitapScore(0, bestLoc, loc,
|
|
pattern), scoreThreshold)
|
|
// What about in the other direction? (speedup)
|
|
bestLoc = lastIndexOf(text, pattern, loc+len(pattern))
|
|
if bestLoc != -1 {
|
|
scoreThreshold = math.Min(dmp.matchBitapScore(0, bestLoc, loc,
|
|
pattern), scoreThreshold)
|
|
}
|
|
}
|
|
|
|
// Initialise the bit arrays.
|
|
matchmask := 1 << uint((len(pattern) - 1))
|
|
bestLoc = -1
|
|
|
|
var binMin, binMid int
|
|
binMax := len(pattern) + len(text)
|
|
lastRd := []int{}
|
|
for d := 0; d < len(pattern); d++ {
|
|
// Scan for the best match; each iteration allows for one more error.
|
|
// Run a binary search to determine how far from 'loc' we can stray at
|
|
// this error level.
|
|
binMin = 0
|
|
binMid = binMax
|
|
for binMin < binMid {
|
|
if dmp.matchBitapScore(d, loc+binMid, loc, pattern) <= scoreThreshold {
|
|
binMin = binMid
|
|
} else {
|
|
binMax = binMid
|
|
}
|
|
binMid = (binMax-binMin)/2 + binMin
|
|
}
|
|
// Use the result from this iteration as the maximum for the next.
|
|
binMax = binMid
|
|
start := int(math.Max(1, float64(loc-binMid+1)))
|
|
finish := int(math.Min(float64(loc+binMid), float64(len(text))) + float64(len(pattern)))
|
|
|
|
rd := make([]int, finish+2)
|
|
rd[finish+1] = (1 << uint(d)) - 1
|
|
|
|
for j := finish; j >= start; j-- {
|
|
var charMatch int
|
|
if len(text) <= j-1 {
|
|
// Out of range.
|
|
charMatch = 0
|
|
} else if _, ok := s[text[j-1]]; !ok {
|
|
charMatch = 0
|
|
} else {
|
|
charMatch = s[text[j-1]]
|
|
}
|
|
|
|
if d == 0 {
|
|
// First pass: exact match.
|
|
rd[j] = ((rd[j+1] << 1) | 1) & charMatch
|
|
} else {
|
|
// Subsequent passes: fuzzy match.
|
|
rd[j] = ((rd[j+1]<<1)|1)&charMatch | (((lastRd[j+1] | lastRd[j]) << 1) | 1) | lastRd[j+1]
|
|
}
|
|
if (rd[j] & matchmask) != 0 {
|
|
score := dmp.matchBitapScore(d, j-1, loc, pattern)
|
|
// This match will almost certainly be better than any existing
|
|
// match. But check anyway.
|
|
if score <= scoreThreshold {
|
|
// Told you so.
|
|
scoreThreshold = score
|
|
bestLoc = j - 1
|
|
if bestLoc > loc {
|
|
// When passing loc, don't exceed our current distance from loc.
|
|
start = int(math.Max(1, float64(2*loc-bestLoc)))
|
|
} else {
|
|
// Already passed loc, downhill from here on in.
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if dmp.matchBitapScore(d+1, loc, loc, pattern) > scoreThreshold {
|
|
// No hope for a (better) match at greater error levels.
|
|
break
|
|
}
|
|
lastRd = rd
|
|
}
|
|
return bestLoc
|
|
}
|
|
|
|
// matchBitapScore computes and returns the score for a match with e errors and x location.
|
|
func (dmp *DiffMatchPatch) matchBitapScore(e, x, loc int, pattern string) float64 {
|
|
accuracy := float64(e) / float64(len(pattern))
|
|
proximity := math.Abs(float64(loc - x))
|
|
if dmp.MatchDistance == 0 {
|
|
// Dodge divide by zero error.
|
|
if proximity == 0 {
|
|
return accuracy
|
|
}
|
|
|
|
return 1.0
|
|
}
|
|
return accuracy + (proximity / float64(dmp.MatchDistance))
|
|
}
|
|
|
|
// MatchAlphabet initialises the alphabet for the Bitap algorithm.
|
|
func (dmp *DiffMatchPatch) MatchAlphabet(pattern string) map[byte]int {
|
|
s := map[byte]int{}
|
|
charPattern := []byte(pattern)
|
|
for _, c := range charPattern {
|
|
_, ok := s[c]
|
|
if !ok {
|
|
s[c] = 0
|
|
}
|
|
}
|
|
i := 0
|
|
|
|
for _, c := range charPattern {
|
|
value := s[c] | int(uint(1)<<uint((len(pattern)-i-1)))
|
|
s[c] = value
|
|
i++
|
|
}
|
|
return s
|
|
}
|
|
|
|
// PATCH FUNCTIONS
|
|
|
|
// PatchAddContext increases the context until it is unique,
|
|
// but doesn't let the pattern expand beyond MatchMaxBits.
|
|
func (dmp *DiffMatchPatch) PatchAddContext(patch Patch, text string) Patch {
|
|
if len(text) == 0 {
|
|
return patch
|
|
}
|
|
|
|
pattern := text[patch.start2 : patch.start2+patch.length1]
|
|
padding := 0
|
|
|
|
// Look for the first and last matches of pattern in text. If two
|
|
// different matches are found, increase the pattern length.
|
|
for strings.Index(text, pattern) != strings.LastIndex(text, pattern) &&
|
|
len(pattern) < dmp.MatchMaxBits-2*dmp.PatchMargin {
|
|
padding += dmp.PatchMargin
|
|
maxStart := max(0, patch.start2-padding)
|
|
minEnd := min(len(text), patch.start2+patch.length1+padding)
|
|
pattern = text[maxStart:minEnd]
|
|
}
|
|
// Add one chunk for good luck.
|
|
padding += dmp.PatchMargin
|
|
|
|
// Add the prefix.
|
|
prefix := text[max(0, patch.start2-padding):patch.start2]
|
|
if len(prefix) != 0 {
|
|
patch.diffs = append([]Diff{Diff{DiffEqual, prefix}}, patch.diffs...)
|
|
}
|
|
// Add the suffix.
|
|
suffix := text[patch.start2+patch.length1 : min(len(text), patch.start2+patch.length1+padding)]
|
|
if len(suffix) != 0 {
|
|
patch.diffs = append(patch.diffs, Diff{DiffEqual, suffix})
|
|
}
|
|
|
|
// Roll back the start points.
|
|
patch.start1 -= len(prefix)
|
|
patch.start2 -= len(prefix)
|
|
// Extend the lengths.
|
|
patch.length1 += len(prefix) + len(suffix)
|
|
patch.length2 += len(prefix) + len(suffix)
|
|
|
|
return patch
|
|
}
|
|
|
|
// PatchMake computes a list of patches.
|
|
func (dmp *DiffMatchPatch) PatchMake(opt ...interface{}) []Patch {
|
|
if len(opt) == 1 {
|
|
diffs, _ := opt[0].([]Diff)
|
|
text1 := dmp.DiffText1(diffs)
|
|
return dmp.PatchMake(text1, diffs)
|
|
} else if len(opt) == 2 {
|
|
text1 := opt[0].(string)
|
|
switch t := opt[1].(type) {
|
|
case string:
|
|
diffs := dmp.DiffMain(text1, t, true)
|
|
if len(diffs) > 2 {
|
|
diffs = dmp.DiffCleanupSemantic(diffs)
|
|
diffs = dmp.DiffCleanupEfficiency(diffs)
|
|
}
|
|
return dmp.PatchMake(text1, diffs)
|
|
case []Diff:
|
|
return dmp.patchMake2(text1, t)
|
|
}
|
|
} else if len(opt) == 3 {
|
|
return dmp.PatchMake(opt[0], opt[2])
|
|
}
|
|
return []Patch{}
|
|
}
|
|
|
|
// patchMake2 computes a list of patches to turn text1 into text2.
|
|
// text2 is not provided, diffs are the delta between text1 and text2.
|
|
func (dmp *DiffMatchPatch) patchMake2(text1 string, diffs []Diff) []Patch {
|
|
// Check for null inputs not needed since null can't be passed in C#.
|
|
patches := []Patch{}
|
|
if len(diffs) == 0 {
|
|
return patches // Get rid of the null case.
|
|
}
|
|
|
|
patch := Patch{}
|
|
charCount1 := 0 // Number of characters into the text1 string.
|
|
charCount2 := 0 // Number of characters into the text2 string.
|
|
// Start with text1 (prepatchText) and apply the diffs until we arrive at
|
|
// text2 (postpatchText). We recreate the patches one by one to determine
|
|
// context info.
|
|
prepatchText := text1
|
|
postpatchText := text1
|
|
|
|
for i, aDiff := range diffs {
|
|
if len(patch.diffs) == 0 && aDiff.Type != DiffEqual {
|
|
// A new patch starts here.
|
|
patch.start1 = charCount1
|
|
patch.start2 = charCount2
|
|
}
|
|
|
|
switch aDiff.Type {
|
|
case DiffInsert:
|
|
patch.diffs = append(patch.diffs, aDiff)
|
|
patch.length2 += len(aDiff.Text)
|
|
postpatchText = postpatchText[:charCount2] +
|
|
aDiff.Text + postpatchText[charCount2:]
|
|
case DiffDelete:
|
|
patch.length1 += len(aDiff.Text)
|
|
patch.diffs = append(patch.diffs, aDiff)
|
|
postpatchText = postpatchText[:charCount2] + postpatchText[charCount2+len(aDiff.Text):]
|
|
case DiffEqual:
|
|
if len(aDiff.Text) <= 2*dmp.PatchMargin &&
|
|
len(patch.diffs) != 0 && i != len(diffs)-1 {
|
|
// Small equality inside a patch.
|
|
patch.diffs = append(patch.diffs, aDiff)
|
|
patch.length1 += len(aDiff.Text)
|
|
patch.length2 += len(aDiff.Text)
|
|
}
|
|
if len(aDiff.Text) >= 2*dmp.PatchMargin {
|
|
// Time for a new patch.
|
|
if len(patch.diffs) != 0 {
|
|
patch = dmp.PatchAddContext(patch, prepatchText)
|
|
patches = append(patches, patch)
|
|
patch = Patch{}
|
|
// Unlike Unidiff, our patch lists have a rolling context.
|
|
// http://code.google.com/p/google-diff-match-patch/wiki/Unidiff
|
|
// Update prepatch text & pos to reflect the application of the
|
|
// just completed patch.
|
|
prepatchText = postpatchText
|
|
charCount1 = charCount2
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update the current character count.
|
|
if aDiff.Type != DiffInsert {
|
|
charCount1 += len(aDiff.Text)
|
|
}
|
|
if aDiff.Type != DiffDelete {
|
|
charCount2 += len(aDiff.Text)
|
|
}
|
|
}
|
|
|
|
// Pick up the leftover patch if not empty.
|
|
if len(patch.diffs) != 0 {
|
|
patch = dmp.PatchAddContext(patch, prepatchText)
|
|
patches = append(patches, patch)
|
|
}
|
|
|
|
return patches
|
|
}
|
|
|
|
// PatchDeepCopy returns an array that is identical to a
|
|
// given an array of patches.
|
|
func (dmp *DiffMatchPatch) PatchDeepCopy(patches []Patch) []Patch {
|
|
patchesCopy := []Patch{}
|
|
for _, aPatch := range patches {
|
|
patchCopy := Patch{}
|
|
for _, aDiff := range aPatch.diffs {
|
|
patchCopy.diffs = append(patchCopy.diffs, Diff{
|
|
aDiff.Type,
|
|
aDiff.Text,
|
|
})
|
|
}
|
|
patchCopy.start1 = aPatch.start1
|
|
patchCopy.start2 = aPatch.start2
|
|
patchCopy.length1 = aPatch.length1
|
|
patchCopy.length2 = aPatch.length2
|
|
patchesCopy = append(patchesCopy, patchCopy)
|
|
}
|
|
return patchesCopy
|
|
}
|
|
|
|
// PatchApply merges a set of patches onto the text. Returns a patched text, as well
|
|
// as an array of true/false values indicating which patches were applied.
|
|
func (dmp *DiffMatchPatch) PatchApply(patches []Patch, text string) (string, []bool) {
|
|
if len(patches) == 0 {
|
|
return text, []bool{}
|
|
}
|
|
|
|
// Deep copy the patches so that no changes are made to originals.
|
|
patches = dmp.PatchDeepCopy(patches)
|
|
|
|
nullPadding := dmp.PatchAddPadding(patches)
|
|
text = nullPadding + text + nullPadding
|
|
patches = dmp.PatchSplitMax(patches)
|
|
|
|
x := 0
|
|
// delta keeps track of the offset between the expected and actual
|
|
// location of the previous patch. If there are patches expected at
|
|
// positions 10 and 20, but the first patch was found at 12, delta is 2
|
|
// and the second patch has an effective expected position of 22.
|
|
delta := 0
|
|
results := make([]bool, len(patches))
|
|
for _, aPatch := range patches {
|
|
expectedLoc := aPatch.start2 + delta
|
|
text1 := dmp.DiffText1(aPatch.diffs)
|
|
var startLoc int
|
|
endLoc := -1
|
|
if len(text1) > dmp.MatchMaxBits {
|
|
// PatchSplitMax will only provide an oversized pattern
|
|
// in the case of a monster delete.
|
|
startLoc = dmp.MatchMain(text, text1[:dmp.MatchMaxBits], expectedLoc)
|
|
if startLoc != -1 {
|
|
endLoc = dmp.MatchMain(text,
|
|
text1[len(text1)-dmp.MatchMaxBits:], expectedLoc+len(text1)-dmp.MatchMaxBits)
|
|
if endLoc == -1 || startLoc >= endLoc {
|
|
// Can't find valid trailing context. Drop this patch.
|
|
startLoc = -1
|
|
}
|
|
}
|
|
} else {
|
|
startLoc = dmp.MatchMain(text, text1, expectedLoc)
|
|
}
|
|
if startLoc == -1 {
|
|
// No match found. :(
|
|
results[x] = false
|
|
// Subtract the delta for this failed patch from subsequent patches.
|
|
delta -= aPatch.length2 - aPatch.length1
|
|
} else {
|
|
// Found a match. :)
|
|
results[x] = true
|
|
delta = startLoc - expectedLoc
|
|
var text2 string
|
|
if endLoc == -1 {
|
|
text2 = text[startLoc:int(math.Min(float64(startLoc+len(text1)), float64(len(text))))]
|
|
} else {
|
|
text2 = text[startLoc:int(math.Min(float64(endLoc+dmp.MatchMaxBits), float64(len(text))))]
|
|
}
|
|
if text1 == text2 {
|
|
// Perfect match, just shove the Replacement text in.
|
|
text = text[:startLoc] + dmp.DiffText2(aPatch.diffs) + text[startLoc+len(text1):]
|
|
} else {
|
|
// Imperfect match. Run a diff to get a framework of equivalent
|
|
// indices.
|
|
diffs := dmp.DiffMain(text1, text2, false)
|
|
if len(text1) > dmp.MatchMaxBits && float64(dmp.DiffLevenshtein(diffs))/float64(len(text1)) > dmp.PatchDeleteThreshold {
|
|
// The end points match, but the content is unacceptably bad.
|
|
results[x] = false
|
|
} else {
|
|
diffs = dmp.DiffCleanupSemanticLossless(diffs)
|
|
index1 := 0
|
|
for _, aDiff := range aPatch.diffs {
|
|
if aDiff.Type != DiffEqual {
|
|
index2 := dmp.DiffXIndex(diffs, index1)
|
|
if aDiff.Type == DiffInsert {
|
|
// Insertion
|
|
text = text[:startLoc+index2] + aDiff.Text + text[startLoc+index2:]
|
|
} else if aDiff.Type == DiffDelete {
|
|
// Deletion
|
|
startIndex := startLoc + index2
|
|
text = text[:startIndex] +
|
|
text[startIndex+dmp.DiffXIndex(diffs, index1+len(aDiff.Text))-index2:]
|
|
}
|
|
}
|
|
if aDiff.Type != DiffDelete {
|
|
index1 += len(aDiff.Text)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
x++
|
|
}
|
|
// Strip the padding off.
|
|
text = text[len(nullPadding) : len(nullPadding)+(len(text)-2*len(nullPadding))]
|
|
return text, results
|
|
}
|
|
|
|
// PatchAddPadding adds some padding on text start and end so that edges can match something.
|
|
// Intended to be called only from within patchApply.
|
|
func (dmp *DiffMatchPatch) PatchAddPadding(patches []Patch) string {
|
|
paddingLength := dmp.PatchMargin
|
|
nullPadding := ""
|
|
for x := 1; x <= paddingLength; x++ {
|
|
nullPadding += string(x)
|
|
}
|
|
|
|
// Bump all the patches forward.
|
|
for i := range patches {
|
|
patches[i].start1 += paddingLength
|
|
patches[i].start2 += paddingLength
|
|
}
|
|
|
|
// Add some padding on start of first diff.
|
|
if len(patches[0].diffs) == 0 || patches[0].diffs[0].Type != DiffEqual {
|
|
// Add nullPadding equality.
|
|
patches[0].diffs = append([]Diff{Diff{DiffEqual, nullPadding}}, patches[0].diffs...)
|
|
patches[0].start1 -= paddingLength // Should be 0.
|
|
patches[0].start2 -= paddingLength // Should be 0.
|
|
patches[0].length1 += paddingLength
|
|
patches[0].length2 += paddingLength
|
|
} else if paddingLength > len(patches[0].diffs[0].Text) {
|
|
// Grow first equality.
|
|
extraLength := paddingLength - len(patches[0].diffs[0].Text)
|
|
patches[0].diffs[0].Text = nullPadding[len(patches[0].diffs[0].Text):] + patches[0].diffs[0].Text
|
|
patches[0].start1 -= extraLength
|
|
patches[0].start2 -= extraLength
|
|
patches[0].length1 += extraLength
|
|
patches[0].length2 += extraLength
|
|
}
|
|
|
|
// Add some padding on end of last diff.
|
|
last := len(patches) - 1
|
|
if len(patches[last].diffs) == 0 || patches[last].diffs[len(patches[last].diffs)-1].Type != DiffEqual {
|
|
// Add nullPadding equality.
|
|
patches[last].diffs = append(patches[last].diffs, Diff{DiffEqual, nullPadding})
|
|
patches[last].length1 += paddingLength
|
|
patches[last].length2 += paddingLength
|
|
} else if paddingLength > len(patches[last].diffs[len(patches[last].diffs)-1].Text) {
|
|
// Grow last equality.
|
|
lastDiff := patches[last].diffs[len(patches[last].diffs)-1]
|
|
extraLength := paddingLength - len(lastDiff.Text)
|
|
patches[last].diffs[len(patches[last].diffs)-1].Text += nullPadding[:extraLength]
|
|
patches[last].length1 += extraLength
|
|
patches[last].length2 += extraLength
|
|
}
|
|
|
|
return nullPadding
|
|
}
|
|
|
|
// PatchSplitMax looks through the patches and breaks up any which are longer than the
|
|
// maximum limit of the match algorithm.
|
|
// Intended to be called only from within patchApply.
|
|
func (dmp *DiffMatchPatch) PatchSplitMax(patches []Patch) []Patch {
|
|
patchSize := dmp.MatchMaxBits
|
|
for x := 0; x < len(patches); x++ {
|
|
if patches[x].length1 <= patchSize {
|
|
continue
|
|
}
|
|
bigpatch := patches[x]
|
|
// Remove the big old patch.
|
|
patches = append(patches[:x], patches[x+1:]...)
|
|
x--
|
|
|
|
start1 := bigpatch.start1
|
|
start2 := bigpatch.start2
|
|
precontext := ""
|
|
for len(bigpatch.diffs) != 0 {
|
|
// Create one of several smaller patches.
|
|
patch := Patch{}
|
|
empty := true
|
|
patch.start1 = start1 - len(precontext)
|
|
patch.start2 = start2 - len(precontext)
|
|
if len(precontext) != 0 {
|
|
patch.length1 = len(precontext)
|
|
patch.length2 = len(precontext)
|
|
patch.diffs = append(patch.diffs, Diff{DiffEqual, precontext})
|
|
}
|
|
for len(bigpatch.diffs) != 0 && patch.length1 < patchSize-dmp.PatchMargin {
|
|
diffType := bigpatch.diffs[0].Type
|
|
diffText := bigpatch.diffs[0].Text
|
|
if diffType == DiffInsert {
|
|
// Insertions are harmless.
|
|
patch.length2 += len(diffText)
|
|
start2 += len(diffText)
|
|
patch.diffs = append(patch.diffs, bigpatch.diffs[0])
|
|
bigpatch.diffs = bigpatch.diffs[1:]
|
|
empty = false
|
|
} else if diffType == DiffDelete && len(patch.diffs) == 1 && patch.diffs[0].Type == DiffEqual && len(diffText) > 2*patchSize {
|
|
// This is a large deletion. Let it pass in one chunk.
|
|
patch.length1 += len(diffText)
|
|
start1 += len(diffText)
|
|
empty = false
|
|
patch.diffs = append(patch.diffs, Diff{diffType, diffText})
|
|
bigpatch.diffs = bigpatch.diffs[1:]
|
|
} else {
|
|
// Deletion or equality. Only take as much as we can stomach.
|
|
diffText = diffText[:min(len(diffText), patchSize-patch.length1-dmp.PatchMargin)]
|
|
|
|
patch.length1 += len(diffText)
|
|
start1 += len(diffText)
|
|
if diffType == DiffEqual {
|
|
patch.length2 += len(diffText)
|
|
start2 += len(diffText)
|
|
} else {
|
|
empty = false
|
|
}
|
|
patch.diffs = append(patch.diffs, Diff{diffType, diffText})
|
|
if diffText == bigpatch.diffs[0].Text {
|
|
bigpatch.diffs = bigpatch.diffs[1:]
|
|
} else {
|
|
bigpatch.diffs[0].Text =
|
|
bigpatch.diffs[0].Text[len(diffText):]
|
|
}
|
|
}
|
|
}
|
|
// Compute the head context for the next patch.
|
|
precontext = dmp.DiffText2(patch.diffs)
|
|
precontext = precontext[max(0, len(precontext)-dmp.PatchMargin):]
|
|
|
|
postcontext := ""
|
|
// Append the end context for this patch.
|
|
if len(dmp.DiffText1(bigpatch.diffs)) > dmp.PatchMargin {
|
|
postcontext = dmp.DiffText1(bigpatch.diffs)[:dmp.PatchMargin]
|
|
} else {
|
|
postcontext = dmp.DiffText1(bigpatch.diffs)
|
|
}
|
|
|
|
if len(postcontext) != 0 {
|
|
patch.length1 += len(postcontext)
|
|
patch.length2 += len(postcontext)
|
|
if len(patch.diffs) != 0 && patch.diffs[len(patch.diffs)-1].Type == DiffEqual {
|
|
patch.diffs[len(patch.diffs)-1].Text += postcontext
|
|
} else {
|
|
patch.diffs = append(patch.diffs, Diff{DiffEqual, postcontext})
|
|
}
|
|
}
|
|
if !empty {
|
|
x++
|
|
patches = append(patches[:x], append([]Patch{patch}, patches[x:]...)...)
|
|
}
|
|
}
|
|
}
|
|
return patches
|
|
}
|
|
|
|
// PatchToText takes a list of patches and returns a textual representation.
|
|
func (dmp *DiffMatchPatch) PatchToText(patches []Patch) string {
|
|
var text bytes.Buffer
|
|
for _, aPatch := range patches {
|
|
_, _ = text.WriteString(aPatch.String())
|
|
}
|
|
return text.String()
|
|
}
|
|
|
|
// PatchFromText parses a textual representation of patches and returns a List of Patch
|
|
// objects.
|
|
func (dmp *DiffMatchPatch) PatchFromText(textline string) ([]Patch, error) {
|
|
patches := []Patch{}
|
|
if len(textline) == 0 {
|
|
return patches, nil
|
|
}
|
|
text := strings.Split(textline, "\n")
|
|
textPointer := 0
|
|
patchHeader := regexp.MustCompile("^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@$")
|
|
|
|
var patch Patch
|
|
var sign uint8
|
|
var line string
|
|
for textPointer < len(text) {
|
|
|
|
if !patchHeader.MatchString(text[textPointer]) {
|
|
return patches, errors.New("Invalid patch string: " + text[textPointer])
|
|
}
|
|
|
|
patch = Patch{}
|
|
m := patchHeader.FindStringSubmatch(text[textPointer])
|
|
|
|
patch.start1, _ = strconv.Atoi(m[1])
|
|
if len(m[2]) == 0 {
|
|
patch.start1--
|
|
patch.length1 = 1
|
|
} else if m[2] == "0" {
|
|
patch.length1 = 0
|
|
} else {
|
|
patch.start1--
|
|
patch.length1, _ = strconv.Atoi(m[2])
|
|
}
|
|
|
|
patch.start2, _ = strconv.Atoi(m[3])
|
|
|
|
if len(m[4]) == 0 {
|
|
patch.start2--
|
|
patch.length2 = 1
|
|
} else if m[4] == "0" {
|
|
patch.length2 = 0
|
|
} else {
|
|
patch.start2--
|
|
patch.length2, _ = strconv.Atoi(m[4])
|
|
}
|
|
textPointer++
|
|
|
|
for textPointer < len(text) {
|
|
if len(text[textPointer]) > 0 {
|
|
sign = text[textPointer][0]
|
|
} else {
|
|
textPointer++
|
|
continue
|
|
}
|
|
|
|
line = text[textPointer][1:]
|
|
line = strings.Replace(line, "+", "%2b", -1)
|
|
line, _ = url.QueryUnescape(line)
|
|
if sign == '-' {
|
|
// Deletion.
|
|
patch.diffs = append(patch.diffs, Diff{DiffDelete, line})
|
|
} else if sign == '+' {
|
|
// Insertion.
|
|
patch.diffs = append(patch.diffs, Diff{DiffInsert, line})
|
|
} else if sign == ' ' {
|
|
// Minor equality.
|
|
patch.diffs = append(patch.diffs, Diff{DiffEqual, line})
|
|
} else if sign == '@' {
|
|
// Start of next patch.
|
|
break
|
|
} else {
|
|
// WTF?
|
|
return patches, errors.New("Invalid patch mode '" + string(sign) + "' in: " + string(line))
|
|
}
|
|
textPointer++
|
|
}
|
|
|
|
patches = append(patches, patch)
|
|
}
|
|
return patches, nil
|
|
}
|