Template
1
0
Fork 0
mirror of https://codeberg.org/forgejo/forgejo synced 2024-11-25 11:16:11 +01:00
forgejo/vendor/github.com/nwaples/rardecode/decode_reader.go

291 lines
6.9 KiB
Go
Raw Normal View History

package rardecode
import (
"errors"
"io"
)
const (
minWindowSize = 0x40000
maxQueuedFilters = 8192
)
var (
errTooManyFilters = errors.New("rardecode: too many filters")
errInvalidFilter = errors.New("rardecode: invalid filter")
)
// filter functions take a byte slice, the current output offset and
// returns transformed data.
type filter func(b []byte, offset int64) ([]byte, error)
// filterBlock is a block of data to be processed by a filter.
type filterBlock struct {
length int // length of block
offset int // bytes to be read before start of block
reset bool // drop all existing queued filters
filter filter // filter function
}
// decoder is the interface for decoding compressed data
type decoder interface {
init(r io.ByteReader, reset bool) error // initialize decoder for current file
fill(w *window) ([]*filterBlock, error) // fill window with decoded data, returning any filters
}
// window is a sliding window buffer.
type window struct {
buf []byte
mask int // buf length mask
r int // index in buf for reads (beginning)
w int // index in buf for writes (end)
l int // length of bytes to be processed by copyBytes
o int // offset of bytes to be processed by copyBytes
}
// buffered returns the number of bytes yet to be read from window
func (w *window) buffered() int { return (w.w - w.r) & w.mask }
// available returns the number of bytes that can be written before the window is full
func (w *window) available() int { return (w.r - w.w - 1) & w.mask }
func (w *window) reset(log2size uint, clear bool) {
size := 1 << log2size
if size < minWindowSize {
size = minWindowSize
}
if size > len(w.buf) {
b := make([]byte, size)
if clear {
w.w = 0
} else if len(w.buf) > 0 {
n := copy(b, w.buf[w.w:])
n += copy(b[n:], w.buf[:w.w])
w.w = n
}
w.buf = b
w.mask = size - 1
} else if clear {
for i := range w.buf {
w.buf[i] = 0
}
w.w = 0
}
w.r = w.w
}
// writeByte writes c to the end of the window
func (w *window) writeByte(c byte) {
w.buf[w.w] = c
w.w = (w.w + 1) & w.mask
}
// copyBytes copies len bytes at off distance from the end
// to the end of the window.
func (w *window) copyBytes(len, off int) {
len &= w.mask
n := w.available()
if len > n {
// if there is not enough space availaible we copy
// as much as we can and save the offset and length
// of the remaining data to be copied later.
w.l = len - n
w.o = off
len = n
}
i := (w.w - off) & w.mask
for ; len > 0; len-- {
w.buf[w.w] = w.buf[i]
w.w = (w.w + 1) & w.mask
i = (i + 1) & w.mask
}
}
// read reads bytes from the beginning of the window into p
func (w *window) read(p []byte) (n int) {
if w.r > w.w {
n = copy(p, w.buf[w.r:])
w.r = (w.r + n) & w.mask
p = p[n:]
}
if w.r < w.w {
l := copy(p, w.buf[w.r:w.w])
w.r += l
n += l
}
if w.l > 0 && n > 0 {
// if we have successfully read data, copy any
// leftover data from a previous copyBytes.
l := w.l
w.l = 0
w.copyBytes(l, w.o)
}
return n
}
// decodeReader implements io.Reader for decoding compressed data in RAR archives.
type decodeReader struct {
win window // sliding window buffer used as decode dictionary
dec decoder // decoder being used to unpack file
tot int64 // total bytes read
buf []byte // filter input/output buffer
outbuf []byte // filter output not yet read
err error
filters []*filterBlock // list of filterBlock's, each with offset relative to previous in list
}
func (d *decodeReader) init(r io.ByteReader, dec decoder, winsize uint, reset bool) error {
if reset {
d.filters = nil
}
d.err = nil
d.outbuf = nil
d.tot = 0
d.win.reset(winsize, reset)
d.dec = dec
return d.dec.init(r, reset)
}
func (d *decodeReader) readErr() error {
err := d.err
d.err = nil
return err
}
// queueFilter adds a filterBlock to the end decodeReader's filters.
func (d *decodeReader) queueFilter(f *filterBlock) error {
if f.reset {
d.filters = nil
}
if len(d.filters) >= maxQueuedFilters {
return errTooManyFilters
}
// offset & length must be < window size
f.offset &= d.win.mask
f.length &= d.win.mask
// make offset relative to previous filter in list
for _, fb := range d.filters {
if f.offset < fb.offset {
// filter block must not start before previous filter
return errInvalidFilter
}
f.offset -= fb.offset
}
d.filters = append(d.filters, f)
return nil
}
// processFilters processes any filters valid at the current read index
// and stores the output in outbuf.
func (d *decodeReader) processFilters() (err error) {
f := d.filters[0]
if f.offset > 0 {
return nil
}
d.filters = d.filters[1:]
if d.win.buffered() < f.length {
// fill() didn't return enough bytes
err = d.readErr()
if err == nil || err == io.EOF {
return errInvalidFilter
}
return err
}
if cap(d.buf) < f.length {
d.buf = make([]byte, f.length)
}
d.outbuf = d.buf[:f.length]
n := d.win.read(d.outbuf)
for {
// run filter passing buffer and total bytes read so far
d.outbuf, err = f.filter(d.outbuf, d.tot)
if err != nil {
return err
}
if cap(d.outbuf) > cap(d.buf) {
// Filter returned a bigger buffer, save it for future filters.
d.buf = d.outbuf
}
if len(d.filters) == 0 {
return nil
}
f = d.filters[0]
if f.offset != 0 {
// next filter not at current offset
f.offset -= n
return nil
}
if f.length != len(d.outbuf) {
return errInvalidFilter
}
d.filters = d.filters[1:]
if cap(d.outbuf) < cap(d.buf) {
// Filter returned a smaller buffer. Copy it back to the saved buffer
// so the next filter can make use of the larger buffer if needed.
d.outbuf = append(d.buf[:0], d.outbuf...)
}
}
}
// fill fills the decodeReader's window
func (d *decodeReader) fill() {
if d.err != nil {
return
}
var fl []*filterBlock
fl, d.err = d.dec.fill(&d.win) // fill window using decoder
for _, f := range fl {
err := d.queueFilter(f)
if err != nil {
d.err = err
return
}
}
}
// Read decodes data and stores it in p.
func (d *decodeReader) Read(p []byte) (n int, err error) {
if len(d.outbuf) == 0 {
// no filter output, see if we need to create more
if d.win.buffered() == 0 {
// fill empty window
d.fill()
if d.win.buffered() == 0 {
return 0, d.readErr()
}
} else if len(d.filters) > 0 {
f := d.filters[0]
if f.offset == 0 && f.length > d.win.buffered() {
d.fill() // filter at current offset needs more data
}
}
if len(d.filters) > 0 {
if err := d.processFilters(); err != nil {
return 0, err
}
}
}
if len(d.outbuf) > 0 {
// copy filter output into p
n = copy(p, d.outbuf)
d.outbuf = d.outbuf[n:]
} else if len(d.filters) > 0 {
f := d.filters[0]
if f.offset < len(p) {
// only read data up to beginning of next filter
p = p[:f.offset]
}
n = d.win.read(p) // read directly from window
f.offset -= n // adjust first filter offset by bytes just read
} else {
n = d.win.read(p) // read directly from window
}
d.tot += int64(n)
return n, nil
}